
Adjusting Performance Testing to the World of Agile

It looks like agile methodologies are somewhat struggling with performance testing.
Theoretically it should be a piece of cake: every iteration you have a working system
and know exactly where you stand with the system's performance. Unfortunately, it
doesn't always work this way in practice. Performance related activities tend to slip
toward the end of the project. Another issue is that agile methods are oriented
toward breaking projects into small tasks, which is quite difficult to do with
performance: performance-related activities usually span the whole project.

From one side we have a challenge to add performance testing into Continuous
Integration making it a part of DevOps processes. From another side, approaching
performance testing formally, with rigid, step-by-step approach and narrow
specialization often leads to missing performance problems or to prolonged agony of
performance troubleshooting. With small extra efforts, making the process more
exploratory, efficiency of performance testing increases significantly and these extra
efforts usually pay off multi-fold even before the end of performance testing.

This paper discusses how performance testing may be adjusted to the modern
industry trends and become an integral part of agile processes. While there are too
many open questions there, it looks like such adjusting is not an option anymore.

After a short introduction into the subject, two major aspects would be discussed:
performance testing in agile projects and doing performance testing the agile way.

Disclaimer: The views expressed here are my personal views only and do not
necessarily represent those of my current or previous employers. All brands and
trademarks mentioned are the property of their owners.

Most large corporations have performance testing / engineering groups today,
performance testing becomes a must step to get the system into production. Still, in
most cases, it is pre-production performance validation only.

Even if it is only a short pre-production performance validation, performance testing
is a project itself with multiple phases of requirement gathering, test design, test
implementation, test execution, and result analysis. So in most cases software
development methodologies could, with some adjustments, be applicable to
performance testing.

The waterfall approach in software development is a sequential process in which
development is seen as flowing steadily downwards (like a waterfall) through the
phases of requirements analysis, design, implementation, testing, integration, and
maintenance [Waterfall]. Being a step on the project plan, performance testing is
usually scheduled in the waterfall way, when you need to finish one step to start next.
Typical steps could be, for example:

-Get the system ready
-Develop scripts requested (sometimes offshore)
-Run scripts in the requested combinations
-Compare with the requirements provided
-Allow some percentage of errors according to the requirements
-Involve the development team if requirements are missed

The word agile here doesn't refer to any specific development process or
methodology. It rather refers to the original definition of this word as stated in
"Manifesto for Agile Software Development" [Manifesto01]:

We are uncovering better ways of developing software by doing it and helping others
do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

We have two different dimensions here. The first is the process used for the whole
project. The second is the approach used to performance testing as a project
(independently from the process used for the whole project).

First we discuss performance testing in software development projects using agile
methodologies.

Practical agile development is struggling with performance in general. Theoretically it
should be a piece of cake: every iteration you have a working system and know
exactly where you stand with the system’s performance. You shouldn’t wait until the
end of the waterfall process to figure out where you are – on every iteration you can
track your performance against requirements and see the progress (making
adjustments on what is already implemented and what is not yet). Clearly it is
supposed to make the whole performance engineering process much more
straightforward and solve the first problem of traditional approach that the system
should be ready for performance testing (so it usually happened very late in the
process).

Unfortunately, it looks like it doesn’t always work this way in practice. So such notions
as “hardening iterations” and “technical debt” get introduced. Although it is probably
the same old problem: functionality gets priority over performance (which is
somewhat explainable: you first need some functionality before you can talk about its
performance). So performance related activities slip toward the end of the project
and the chance to implement a proper performance engineering process built around
performance requirements is missed.

The fundamental issue is, as I see it, that performance engineering teams don’t scale
well, even assuming that they are competent and effective. At least not in their
traditional form. They work well in traditional corporate environments where they
check products for performance before release, but they face challenges as soon as
we start to expand the scope of performance engineering (early involvement, more
products/configurations/scenarios, etc.). And agile projects, where we need to test
the product each iteration or build, expose the problem through an increased volume
of work to do.

Just to avoid misunderstandings, I am a strong supporter of having performance
teams and I believe that it is the best approach to building performance culture.
Performance is a special area and performance specialists should have an
opportunity to work together to grow professionally. The details of organizational
structure may vary, but a center of performance expertise should exist. Only thing I
am saying here is that while the approach works fine in traditional environments, it
needs major changes in organization, tools, and skills when the scope of performance
engineering should be extended (as in the case of agile projects).

Actually remedies are well known: automation, making performance everyone jobs
(full immersion), etc. [Crispin09, Barber11] However they are not wide-spread yet.

Automation (continuous performance testing) means here not only using tools (in
performance testing we almost always use tools), but automating the whole process
including setting up environment, running tests, and reporting / analyzing results.

Historically performance testing automation was almost non-existent (at least in
traditional environments). Performance testing automation is much more difficult
than, for example, functional testing automation. Setups are much more complicated.
A list of possible issues is long. Results are complex (not just pass/fail). It is not easy
to compare two result sets. So it is definitely much more difficult and would probably
require much more human intervention, but it isn't impossible.

And, of course, changing interfaces is a major challenge. Especially when recording is
used to create scripts and it is difficult to predict if product changes break scripts.

However, the cost of performance testing automation is high. You need to know
system well enough to make meaningful automation. Automation for a new system
doesn't make much sense - overheads are too high. So there was almost no
automation in traditional environment [with testing in the end with a record/playback
tool]. When you test the system once in a while before a next major release, chances
to re-use your artifacts are low.

It is opposite when the same system is tested again and again (as it should be in agile
projects). It makes sense to invest in setting up automation. It rarely happened in
traditional environments – even if you test each release, they are far apart and the
difference between the releases prevents re-using the artifacts (especially with
recorded scripts – APIs, for example, is usually more stable). So demand for
automation was rather low and tool vendors didn't pay much attention to it. Well, the
situation is changing – we may see more automation-related features in load testing
tools soon.

I am not saying that automation would replace performance testing as we know it.
Performance testing of new systems is agile and exploratory in itself and can't be
replaced by automation (well, at least not in the foreseen future). Automation would
complement it – together with additional input from development offloading
performance engineers from routine tasks not requiring sophisticated research and
analysis.

Actually it is similar to functional testing where you need to find a trade-off between
automated regression testing and exploratory testing – with the difference that you
use tools in performance testing in any case and setting up continuous performance
testing is much more new and challenging.

So we have one more dimension to consider: what kind of the system we have and
what kind of performance testing we need. For a new system, when we don’t know
much about it, we need an agile / exploratory kind of testing (one definition of
exploratory testing is: Exploratory testing is simultaneous learning, test design, and
test execution [Bach03] - that is exactly what we need for a new system). For a well-
known system, when changes are rather small, we don’t need much exploration and
automation may be very effective.

Until recently, while there were some vendors claiming that their load testing tools
better fit agile processes, it usually meant that the tool is a little easier to handle
(and, unfortunately, often just because there is not much functionality in it). While
ease of use is an important factor, it is not specific to agile and should be
accompanied by all necessary functionality.

What makes agile projects really different is need of running large number of tests
repeatedly – resulting in need for tools to support performance testing automation.
Unfortunately, even if a tool has something that may be used for automation, like
starting by a command line with parameters, it is difficult to find out.

So far I read about few full-scale implementation of continuous performance testing
(for example, [Harding11] or [OpTier12]). Probably we don't see it more often
because we don't have much infrastructure for that kind of automation and
performance testers may be not the best people to create complex integrated
solutions from dozens of not-related pieces (as those who implemented it did). When
we get more automation support in tools, we will probably see it more often.

Recently agile support became the main theme in load testing tools, a lot of new
developments. Several tools recently announced integration with Continuous
Integration Servers (such as Jenkins or Hudson).

Cloud integration, including automated deployment to public clouds (almost all major
load testing tools) and private cloud automation (Oracle Testing as a Service - TaaS).

Support of newest technologies (such as WebSocket or SPDY by Neoload or ADF in
Oracle Load Testing).

Another issue here is that agile methods are oriented toward breaking projects into
small tasks, which is quite difficult to do with performance (and many other non-
functional requirements) – performance-related activities usually span the whole
project.

There is no standard approach to specifying performance requirements in agile
methods. Mostly it is suggested to present them as user stories or as constraints. The
difference between user stories and constraints approaches is not in performance
requirements per se, but how to address them during the development process. The
point of the constraint approach is that user stories should represent finite
manageable tasks, while performance-related activities can’t be handled as such
because they usually span multiple components and iterations. Those who suggest to
use user stories address that concern in another way – for example, separating cost
of initial compliance and cost of ongoing compliance [Hazrati11].

Now we will discuss another agile aspect of performance testing : approaching
performance testing projects in the agile way (independently from what approach is
used in the overall software development project).

Even if the project scope is limited to pre-production performance testing,
approaching testing with an agile, iterative approach you meet your goals faster and
more efficiently and, of course, learn more about the system along the way. After we
prepare a script for testing (or however the workload is generated), we can run one, a
few, and many users (how many depends on the system), analyze results (including
resources utilization), and try to sort out any errors. The source of errors can be quite
different – script error, functional error, or a direct consequence of a performance
bottleneck. It doesn't make much sense to add load until you figure out what is going
on. Even with a single script you can find many problems and, at least partially, tune
the system. Running scripts separately also allows you to see how much resources are
used by each type of load and make some kind of system's "model".

Using the "waterfall" approach doesn’t change the nature of performance testing; it
just means that you probably do a lot of extra work and still come back to the same
point, performance tuning and troubleshooting, much later in the cycle. Not to
mention that large tests using multiple use cases are usually a bad point to start
performance tuning and troubleshooting - symptoms you see may be a cumulative
effect of multiple issues.

Using an agile, iterative approach doesn't mean that you need to re-define the
software development process, but rather find new opportunities inside existing
processes. I believe that most good performance engineers are already doing
performance testing in an agile way but just presenting it as "waterfall" to
management (some kind of guerilla tactic). In most cases you need to present a
waterfall-like plan to management, and then you are free to do whatever is necessary
to properly test the system inside the scheduled timeframe and scope. If
opportunities exist, performance engineering may be extended further, for example,

I have never read or heard anybody argue against testing early. Nevertheless, it still
rarely happens in practice. Usually some project-specific reasons are stated like tight
schedule or budget preventing such activities (if somebody thought about them at
all).

The Software Performance Engineering (SPE) approach to the development of
software systems to meet performance requirements has long been advocated by Dr.
Connie Smith and Dr. Lloyd Williams (see, for example, [Smith02].). While their
methodology doesn't focus on testing initiatives, it cannot be successfully
implemented without some preliminary testing and data collection to determine
both model inputs and parameters as well as to validate model results. Whether you
are considering a full-blown SPE or guerrilla–style "back-of-the-envelope" approach,
you still need to obtain baseline measurements on which to build your calculations.
Early performance testing at any level of detail can be very valuable at this point.

While early performance engineering is definitely the best approach (at least for
product development) and has long been advocated, it is still far from commonplace.
The main problem here is that mentality should be changed from a simplistic
"record/playback" performance testing occurring late in the product life-cycle to a
more robust true performance engineering approach starting early in the product life-
cycle. You need to translate "business functions" performed by the end user into
component/unit-level usage, and end-user requirements into component/unit-level
requirements, etc. You need to go from the record/playback approach to utilizing
programming skills to generate the workload and create stubs to isolate the
component from other parts of the system. You need to go from "black box"
performance testing to "grey box".

One rarely discussed aspect of early performance testing is unit performance testing.
The unit here maybe any part of the system like a component, service, or device. It is
not a standard practice, but it should be. As we get later in the development cycle, it
is more costly and difficult to make changes. Why should we wait until the whole
system is assembled to start performance testing? We don't wait in functional
testing, why should we in performance? The pre-deployment performance test is an
analogue of system or integration tests, but usually it is conducted without any "unit
testing" of performance.

The main obstacle here is that many systems are pretty monolithic; if there are parts -
they don't make much sense separately. But there may be significant advantages to
test-driven development. If you can decompose the system into components in such
way that you may test them separately for performance, then you will only need to
fix integration issues when you put the system together. Another problem is that
large corporations use a lot of third-party products where the system appears as a
"black box" and is not easily understood making it more difficult to test effectively.

During unit testing different variables such as load, the amount of data, security, etc.
can be reviewed to determine their impact on performance. In most cases, test cases
are simpler and tests are shorter in unit performance testing. There are typically
fewer tests with limited scope; e.g., fewer number of variable combinations than we
have in a full stress and performance test.

Another kind of early performance testing is infrastructure benchmarking; the
hardware and software infrastructure is also a component of the system.

We shouldn't underestimate the power of the single-user performance test. If the
performance of the system for a single user isn't good, it won't be any better for
multiple users. Single-user testing is conducted throughout application development
life-cycle, during functional testing and user acceptance testing; gathering
performance data during these stages can be extremely helpful. The single-user
performance alone may facilitate the detection of some performance issues earlier.
Single-user performance can provide a good indication of what business functions
and application code needs to be investigated further. Additionally, between single-
user tests and load tests there are also functional multi-user tests as described in
Karen Johnson's article [Johnson08]. A well-constructed test with a few users can also
help to identify a lot of problems which may be very difficult to diagnose during load
testing.

I believe that the title of the Andy Grove book "Only the Paranoid Survive" [Grove96]
relates even better to performance engineers than it does to executives. I can
imagine an executive who isn't paranoid, but I can't imagine a good performance
engineer without this trait. And it is applicable to the entire testing effort from the
scenarios you consider, to the scripts you create, and the results you report.

There are two large set of questions requiring architect-type expertise:

Gathering and validation of all requirements (first of all, workload definition) and
projecting them onto the system architecture.

Too many testers consider all detailed information that they obtain from the business
people (i.e., workload descriptions, scenarios, use cases, etc.) as the "holy script". But
business people know the business, and they rarely know anything about
performance engineering. So obtaining requirements is an iterative process and every
requirement submitted should be evaluated and, if possible, validated [Podelko11].
Sometimes performance requirements are based on reliable data, sometimes they
are just a pure guess, and it is important to understand how reliable they are.

The load the system should handle should be carefully scrutinized; the workload is an
input to testing, while response times are output. You may decide if response times
are acceptable even after the test – but you should define workload before.

The gathered requirements should be projected onto the system architecture – it is
important to understand if included test cases add value testing a different set of
functionality or different components of the system. From another side, it is
important to make sure that we have test cases for every component (or, if we don't,
we know why).

Making sure that the system under test is properly configured and the results
obtained may be used (or at least projected) for the production system. Environment
and setup-related considerations can have a dramatic effect. Here are a few:
•What data are used? Is it real production data, artificially generated data, or just a
few random records? Does the volume of data match the volume forecasted for
production? If not, what is the difference?
•How are users defined? Do you have an account set with the proper security rights
for each virtual user or do you plan to re-use a single administrator id?
•What are the differences between the production and the test environment? If your
test system is just a subset of your production - can you simulate the entire load or
just a portion of that load?

It is important to get the test environment as close as possible to the production
environment, but some differences may still remain. Even if we executed the test in
the production environment with the actual production data, it would only represent
one point in time, other conditions and factors would also need to be considered. In
real life the workload is always random, changing each moment, including actions
that nobody could even guess.

Performance testing isn't exact science. It is a way to decrease the risk, not to
eliminate it completely. Results are as meaningful as the test and environment you
created. Usually performance testing has small functional coverage, no emulation of
unexpected events, etc. Both the environment and the data are often scaled down.
All these factors confound the straightforward approach to performance testing –
which states that we simply test X users simulating test cases A and B. This way we
leave aside a lot of questions, for example: How many users the system can handle?
What happens if we add other test cases? Do ratios of use cases matter? What if

There are very few systems today that are stateless with static content using plain
HTML, the kind of systems that lend themselves to a simplistic "record/playback"
approach. In most cases there are many stumbling blocks in your way to create a
proper workload. Starting from the approach you use to create the workload – the
traditional "record/playback" approach just doesn't work in many cases [Podelko12].
If it is the first time you see the system there is absolutely no guarantee that you can
quickly record and playback scripts to create the workload, if at all.

Creating performance testing scripts and other objects is, in essence, a software
development project. Sometimes automatic script generation from recording is
mistakenly interpreted as the whole process of script creation, but it is only the
beginning. Automatic generation provides ready scripts in very simple cases; in most
non-trivial cases it is just a first step. You need to correlate (get dynamic variables
from the server) and parameterize (use different data for different users) scripts.
These are operations prone to errors because we make changes directly in the
communication stream. Every mistake is very dangerous because such mistakes
usually can not happen in the real world where the users works with the system
through a user interface or API calls.

After the script is created it should be evaluated for a single user, multiple users, and
with different data. You should not assume that the system works correctly when the
script was executed without errors. A very important part of load testing is workload
validation. We should be sure that the applied workload is doing what it is supposed
to do and that all errors are caught and logged. It can be done directly by analyzing
server responses or, in cases when this is impossible, indirectly. It can be done, for
example, by analyzing the application log or database for the existence of particular
entries.

My group specializes in performance testing of financial analysis products. A few of
scripting challenges exist for almost every product. Nothing exceptional – you should
resolve them if you have some experience and would be attentive enough, but time
after time we are called to save performance testing projects ("nothing works" or
"the system doesn't perform") to find out that there are serious problems with scripts
and scenarios which make test results meaningless. Even very experienced testers
stumble, but problems could be avoided if more time were spent analyzing what is
going on. Let's consider an example – probably typical for challenges you can face
with modern Web-based applications.

Some operations, like financial consolidation, can take a long time. The client starts
the operation on the server and then waits until it will finish, a progress bar is shown
in meanwhile. When recorded, the script looks like (in LoadRunner pseudo-code):

web_custom_request("XMLDataGrid.asp_7",
"URL={URL}/Data/XMLDataGrid.asp?Action=EXECUTE&TaskID=1024&RowStart=1&Co
lStart=2&RowEnd=1&ColEnd=2&SelType=0&Format=JavaScript", LAST);

web_custom_request("XMLDataGrid.asp_8",
"URL={URL}/Data/XMLDataGrid.asp?Action=GETCONSOLSTATUS", LAST);

web_custom_request("XMLDataGrid.asp_9",
"URL={URL}/Data/XMLDataGrid.asp?Action=GETCONSOLSTATUS", LAST);

web_custom_request("XMLDataGrid.asp_9",
"URL={URL}/Data/XMLDataGrid.asp?Action=GETCONSOLSTATUS", LAST);

What each request is doing is defined by the ?Action= part. The number of
GETCONSOLSTATUS requests recorded depends on the processing time. In the
example above it was recorded three times; it means that the consolidation was done
by the moment the third GETCONSOLSTATUS request was sent to the server. If
playback this script, it will work in the following way: the script submits the
consolidation in the EXECUTE request and then calls GETCONSOLSTATUS three times.
If we have a timer around these requests, the response time will be almost
instantaneous. While in reality the consolidation may take many minutes or even an
hour (yes, this is a good example when sometimes people may be happy having one
hour response time in a Web application). If we have several iterations in the script,

Consolidation scripts require creating an explicit loop around GETCONSOLSTATUS to
catch the end of consolidation:

web_custom_request("XMLDataGrid.asp_7",
"URL={URL}/Data/XMLDataGrid.asp?Action=EXECUTE&TaskID=1024&RowStart=1&Co
lStart=2&RowEnd=1&ColEnd=2&SelType=0&Format=JavaScript", LAST);

do {
 sleep(3000);
 web_reg_find("Text=1", "SaveCount=abc_count", LAST);
 web_custom_request("XMLDataGrid.asp_8",
 "URL={URL}/Data/XMLDataGrid.asp?Action=GETCONSOLSTATUS",
 LAST);
 } while (strcmp(lr_eval_string("{abc_count}"),"1")==0);

Here the loop simulates the internal logic of the system sending GETCONSOLSTATUS
requests each 3 sec until the consolidation is done. Without such loop the script just
checks the status and finishes the iteration while the consolidation continues for a
long time after that.

Usually, when people are talking about performance testing, they do not separate it
from tuning, diagnostics, or capacity planning. “Pure” performance testing is possible
only in rare cases when the system and all optimal settings are well known. Some
tuning activities are usually necessary at the beginning of the testing to be sure that
the system is properly tuned and the results are meaningful. In most cases, if a
performance problem is found, it should be diagnosed further up to the point when it
is clear how to handle it. Generally speaking, 'performance testing', 'tuning',
'diagnostics', and 'capacity planning' are quite different processes and excluding any
of them from the test plan (if they are assumed) will make it unrealistic from the
beginning.

Both performance tuning and troubleshooting are iterative processes where you
make the change, run the test, analyze the results, and repeat the process based on
the findings. The advantage of performance testing is that you apply the same
synthetic load, so you can accurately quantify the impact of the change that was
made. That makes it much simpler to find problems during performance testing than
wait until they happen in production where workload is changing all the time.

Still, even in the test environment, tuning and performance troubleshooting are quite
sophisticated diagnostic processes usually requiring close collaboration between a
performance engineer running tests and developers and/or system administrators
making changes. In most cases it is impossible to predict how many test iterations
would be necessary. Sometimes it makes sense to create a shorter and simpler test
still exposing the problem under investigation. Running a complex, "real-life" test on
each tuning or troubleshooting iteration can make the whole process very long as
well as make the problem less evident due to different effects the problem may have
on different workloads.

Creating a model of the system under test is very important and significantly
increases the value of performance testing. First, it is one more way to validate test
correctness and help to identify problems with the system – if you see deviations
from the expected behavior it may mean issues with the system or issues with the
way you create workload (see good examples in [Gunther06]). Second, it allows
answering questions about sizing and capacity planning of the system.

It doesn't need to be a formal model created by a sophisticated modeling tool (at
least for the purpose of performance testing – if any formal model is required, it is a
separate activity). It may be just simple observations how much resources on each
component of the system are needed for the specific workload. For example, the
workload A creates significant CPU utilization on the server X while the server Y is
hardly touched. This means that if increase the workload A the lack of CPU resources
on the server X will create a bottleneck. As you run more and more complex tests,
you verify results you get against your "model", your understanding how the system
behaves – and if they don't match, you need to figure out what is wrong.

If agile methodology is implemented properly, it should be much easier and less risky
to do performance testing as far as the system should be available for testing at the
end of each iteration.

However, if you are involved from the beginning and testing the system each iteration
as it gets delivered, you probably would need more resources comparing to pre-
production performance testing. Payoff is in decreasing performance-related risks
and finding problems early (which, unfortunately, is quite difficult to quantify
comparing with the cost of resources you need to invest).

 Automation and making performance everyone’s job is the way to handle work
increase and make it more manageable.

Even if the project scope is limited to pre-production performance testing,
approaching testing with an agile, iterative approach you meet your goals faster and
more efficiently and, of course, learn more about the system along the way. After we
prepare a script for testing (or however the workload is generated), we can run one, a
few, and many users (how many depends on the system), analyze results (including
resources utilization), and try to sort out any errors. The source of errors can be quite
different – script error, functional error, or a direct consequence of a performance
bottleneck. It doesn't make much sense to add load until you figure out what is going
on. Even with a single script you can find many problems and, at least partially, tune
the system. Running scripts separately also allows you to see how much resources are
used by each type of load and make some kind of system's "model".

Using the "waterfall" approach doesn’t change the nature of performance testing; it
just means that you probably do a lot of extra work and still come back to the same
point, performance tuning and troubleshooting, much later in the cycle. Not to
mention that large tests using multiple use cases are usually a bad point to start
performance tuning and troubleshooting - symptoms you see may be a cumulative
effect of multiple issues.

Using an agile, iterative approach doesn't mean that you need to re-define the
software development process, but rather find new opportunities inside existing
processes. I believe that most good performance engineers are already doing
performance testing in an agile way but just presenting it as "waterfall" to
management (some kind of guerrilla tactic). In most cases you need to present a
waterfall-like plan to management, and then you are free to do whatever is necessary
to properly test the system inside the scheduled timeframe and scope. If
opportunities exist, performance engineering may be extended further, for example,

[Agile] Agile Software Development, Wikipedia.
http://en.wikipedia.org/wiki/Agile_software_development

[AgileLoad12] Agile Performance Testing process, AgileLoad whitepaper, 2012.
http://www.agileload.com/agileload//blog/2012/10/22/agile-performance-testing-process---
whitepaper

[Bach03] Bach, J. Exploratory Testing Explained, 2003.
http://people.eecs.ku.edu/~saiedian/teaching/Fa07/814/Resources/exploratory-testing.pdf

[Barber07] Barber, S. An Explanation of Performance Testing on an Agile Team, 2007.
http://www.logigear.com/newsletter-2007/320-an-explanation-of-performance-testing-on-
an-agile-team-part-1-of-2.html http://www.logigear.com/newsletter-2007/321-an-
explanation-of-performance-testing-on-an-agile-team-part-2-of-2.html

[Barber11] Barber, S. Performance Testing in the Agile Enterprise, STP, 2011.
http://www.slideshare.net/rsbarber/agile-enterprise

[Buksh11] Buksh, J. Performance By Design – an Agile Approach, 2011.
http://www.perftesting.co.uk/performance-by-design-an-agile-approach/2011/11/18/

[Capacitas13] Improving the Value of Your Agile Performance Testing (Part 1), Capacitas’s
blog, 2013.

http://capacitas.wordpress.com/2013/05/20/improving-the-value-of-your-agile-
performance-testing-part-1/

[Crispin09] Crispin L., Gregory, J. Agile Testing: A Practical Guide for Testers and Agile Teams.
Pearson Education, 2009.

[Dobson07] Dobson, J. Agile Performance Testing, Agile, 2007
http://agile2007.agilealliance.org/downloads/proceedings/075_Performance%20Testing%20
on%20an%20Agile%20Project_617.pdf

[Harding11] Harding A. Continuous Integration - A Performance Engineer's Tale, 2011.
http://www.slideshare.net/sthair/continuous-integration-a-performance-engineers-journey

[Hazrati11] Hazrati, V. Nailing Down Non-Functional Requirements, InfoQ, 2011.

