
1

While development process is moving towards all things continuous, performance testing
remains rather a gray area. Some continue to do it in the traditional pre-release fashion,
some claim 100% automation and full integration into their continuous process. We have a
full spectrum of opinions of what, when, and how should be done in regard to performance.
The issue here is that context is usually not clearly specified - while context is the main
factor here. Depending on context, the approach may (and probably should) be completely
different. Full success in a simple (from the performance testing point of view) environment
doesn't mean that you may easily replicate it in a difficult environment. The speaker will
discuss the issues of making performance testing continuous in detail, illustrating them with
personal experience when possible.

The traditional, stereotypical way of doing load testing is running few tests at the last
moment before rolling out the system in production without much instrumentation. It made
sense for waterfall development – as not much was available for performance testing until
the last moment anyway. And yes, we still need all skills and techniques of traditional
performance testing – but now we need much more.

2

The need in continuous performance testing is coming from needs of agile / iterative
development. So it is important to understand what changes in performance testing are
triggered by agile development in general – and only then to see where continuous
performance testing gets into the picture.

3

Agile development eliminates the main problem of tradition development: you need to have
a working system before you may test it, so performance testing happened at the last
moment. While it was always recommended to start performance testing earlier, it was
usually rather few activities you can do before the system is ready. Now, with agile
development, we got a major “shift left”, allowing indeed to start testing early.

4

From the agile development side the problem is that, unfortunately, it doesn’t always work
this way in practice. So such notions as “hardening iterations” and “technical debt” get
introduced. Although it is probably the same old problem: functionality gets priority over
performance (which is somewhat explainable: you first need some functionality before you
can talk about its performance). So performance related activities slip toward the end of the
project and the chance to implement a proper performance engineering process built
around performance requirements is missed.

5

From the performance testing side the problem is that performance engineering teams
don’t scale well, even assuming that they are competent and effective. At least not in their
traditional form. They work well in traditional corporate environments where they check
products for performance before release, but they face challenges as soon as we start to
expand the scope of performance engineering (early involvement, more
products/configurations/scenarios, etc.). And agile projects, where we need to test the
product each iteration or build, expose the problem through an increased volume of work to
do.

Remedies recommended are usually automation and making performance everyone jobs
(full immersion) [BARB11]. However they haven’t yet developed in mature practices and
probably will vary much more depending on context than the traditional approach.

6

The problem is that early performance testing requires a mentality change from a simplistic
"record/playback" performance testing occurring late in the product life-cycle to a
performance engineering approach starting early in the product life-cycle. You need to
translate "business functions" performed by the end user into component/unit-level usage
and end-user requirements into component/unit-level requirements. You need to go from
the record/playback approach to utilizing programming skills to generate the workload and
create stubs to isolate the component from other parts of the system. You need to go from
"black box" performance testing to "grey box", understanding the architecture of the system
and how your load impact. And for all these you need to get all stakeholders involved -
making performance everyone’s job.

7

While automation would take a significant role in the future, it addresses one side of the
challenge. Another side of agile challenge is usually left unmentioned. The blessing of agile
development – allowing to test the system early – highlights that for early testing we need
another mindset and another set of skills and tools. Performance testing of new systems is
agile and exploratory in itself and can't be replaced by automation (well, at least not in the
foreseen future). Automation would complement it offloading performance engineers from
routine tasks not requiring sophisticated research and analysis. But testing early – bringing
most benefits by identifying problems early when the cost of their fixing is low – does
require research and analysis, it is not a routine activity and can’t be easily formalized. It is
similar to functional testing where both automated regression testing and exploratory
testing are needed – with the difference that tools are used in performance testing in any
case and setting up continuous performance testing is much more new and challenging.

The concept of exploratory performance testing is still rather alien. But the notion of
exploring is much more important for performance testing than for functional testing.
Functionality of systems is usually more or less defined (whether it is well documented is a
separate question) and testing boils down to validating if it works properly. In performance
testing, you won't have a clue how the system would behave until you try it. Having
requirements – which in most cases are goals you want your system to meet – doesn't help
you much here because actual system behavior may be not even close to them. It is rather
a performance engineering process (with tuning, optimization, troubleshooting and fixing
multi-user issues) eventually bringing the system to the proper state than just testing.

8

If we have the testing approach dimension, the opposite of exploratory would be regression
testing. We want to make sure that we have no regressions as we modify the product –
and we want to make it quick and, if possible, automatic. And as soon as we get to an
iterative development process where we have product changing all the time - we need to
verify that there is no regression all the time. It is a very important part of the continuum
without which your testing doesn't quite work. You will be missing regressions again and
again going through the agony of tracing them down in real time. Automated regression
testing becomes a must as soon as we get to iterative development where we need to test
each iteration.

So we have a continuum from regression testing to exploratory testing, with traditional load
testing being just a dot on that dimension somewhere in the middle. Which approach to
use (or, more exactly, which combination of approaches to use) depends on the system.
When the system is completely new, it would be mainly exploratory testing. If the system
is well known and you need to test it again and again for each minor change – it would be
regression testing and here is where you can benefit from automation (which can be
complemented by exploratory testing of new functional areas – later added to the
regression suite as their behavior become well understood).

If we see the continuum this way, the question which kind of testing is better looks
completely meaningless. You need to use the right combination of approaches for your
system in order to achieve better results. Seeing the whole testing continuum between
regression and exploratory testing should help in understanding what should be done.

9

Now let’s look into performance testing automation and continuous performance testing.

10

You see Performance CI presentations at every conference nowadays (for example, at
Velocity conferences). Just here at CMG imPACt we have several presentations exactly
about this topic. It creates impression that it is a common practice and everybody is doing it
(see, for example, [PRAT15]). However still not many performance professionals do it as
far as I know – and some even speak up about the topic – as Stephen Townshend in The
Myth of Continuous Performance Testing [TOWN17].

11

Point of view depends on who you are. If you need to verify performance of the system
only – why would you bother with automation? If you need to do it each
build/iteration/sprint/etc. you start to think about it even knowing what is involved. If you are
Automation Engineer / SDET / etc. you do something as it sounds natural to you - and
then elaborate what you got…

12

First, we need to understand when automation is really needed – and why we practically
didn’t have any performance automation in traditional environments. You need know
system well enough to make meaningful automation. If system is new, overheads are too
high. Automated interfaces should be stable enough (although APIs are usually more
stable on early stages). If the same system is tested again and again it does make sense
to invest in setting up automation.

13

All issues are real and serious – but how challenging is every one depends heavily on
context. Let’s consider all these concerns separately.

14

Usually involving performance testing into continuous integration happens when other
elements are in place – automatic builds, basic automated deployment and configuration,
functional testing. If it is not so, it is a completely different challenge. Still, even everything
is in place, it may require significant enhancements for performance testing – such as
multi-machine deployments, making sure that configuration stays the same (in whatever
way it make sense for the system), deployment meaningful sets of data and security
configuration, getting all needed monitoring / instrumentation / logging in place.

15

We have many parts of the puzzle here – more than in functional testing – and the need to
work smooth together. We have the system under test (usually distributed), a load testing
tool or harness, CI tools / plumbing, results analysis / alerting… And everything may go
wrong – so it needs extensive error handling, which is a challenge between different tiers /
tools.

16

In more and more cases, performance testing should not be just an independent step of
the software development life-cycle when you get the system shortly before release. In
agile development / DevOps environments it should be interwoven with the whole
development process. There are no easy answers here that fit all situations. While agile
development / DevOps become mainstream nowadays, their integration with performance
testing is just making first steps.

What makes agile projects really different is the need to run a large number of tests
repeatedly, resulting in the need for tools to support performance testing automation. The
situation started to change recently as agile support became the main theme in load testing
tools [LOAD14]. Several tools recently announced integration with Continuous Integration
Servers (such as Jenkins or Hudson). While initial integration may be limited, it is
definitively an important step toward real automation support.

It doesn't looks like we may have standard solutions here, as agile and DevOps
approaches differ significantly and proper integration of performance testing can't be done
without considering such factors as development and deployment process, system,
workload, ability to automate and automatically analyze results.

The continuum here would be from old traditional load testing (which basically means no
real integration: it is a step in the project schedule to be started as soon as system would
be ready, but otherwise it is executed separately as a sub-project) to full integration into CI
when tests are run and analyzed automatically for every change in the system.

17

Most load testing tools compare results to SLAs – but it is not very useful for continuous
integration when we want to see the change.

18

Even if there is some comparisons – they are rather simple. Here is an example for
Jenkins Performance Plugin – taking input from JMeter, Junit, Taurus and few more tools. It
is easy to get something if you have Jenkins and Jmeter – you will find quite a few
instructions how to do it. But any step you do further – you are basically on your own. It
would probably result at least in some sophisticated plumbing, if not significant custom
development.

19

We have two parts here: variability inherent to test / environment (which we need to
separate from changes in performance) and variability due to difference in environments
(which is quite often is the case when environments are allocated automatically). Here is a
rather extreme case when app server environment may be allocated in the same or in
another data center as database environment (so we see the difference between about 1
sec and about 5-7 sec).

20

Traditional approach to performance testing – recording/playback on the protocol level (and
on GUI level too) - is notoriously prone to change / fragile, especially during early stages of
system’s lifecycle. It adds a lot of overheads maintaining the scripts and the need to add
sophisticated logic to avoid false negative and positive results, especially in case of
Continuous Integration. Using APIs is usually more robust when you have APIs available
and know well how it is used – but it often not the case.

21

Record and playback on the protocol level is the mainstream approach to load testing:
recording communication between two tiers of the system and playing back the
automatically created script (usually, of course, after proper correlation and
parameterization). As far as no client-side activities are involved, it allows the simulation of
a large number of users.

22

23

Such tool can only be used if it supports the specific protocol used for communication
between two tiers of the system.

With quick internet growth and the popularity of browser-based clients, most products
support only HTTP or a few select web-related protocols. To the author's knowledge, only
MicroFocus LoadRunner and SilkPerformer try to keep up with support for all popular
protocols (other products claiming support of different protocols usually use only UI-level
recording/playback, described below). Therefore, if you need to record a special protocol,
you will probably end up looking at these two tools (unless you find a special niche tool
supporting your specific protocol). This somewhat explains the popularity of LoadRunner at
large corporations because they usually using many different protocols. The level of
support for specific protocols differs significantly, too. Some HTTP-based protocols are
extremely difficult to correlate if there is no built-in support, so it is recommended that you
look for that kind of specific support if such technologies are used. For example, Oracle
Application Testing Suite may have better support of Oracle technologies (especially new
ones such as Oracle Application Development Framework, ADF).

This option has been available for a long time, but it is much more viable now. For
example, it was possible to use Mercury/HP WinRunner or QuickTest Professional (QTP)
scripts in load tests, but a separate machine was needed for each virtual user (or at least a
separate terminal session). This drastically limited the load level that could be achieved.
Other known options were, for example, Citrix and Remote Desktop Protocol (RDP)
protocols in LoadRunner – which always were the last resort when nothing else was
working, but were notoriously tricky to play back.

New UI-level tools for browsers, such as Selenium, have extended the possibilities of the
UI-level approach, allowing running of multiple browsers per machine (limiting scalability
only to the resources available to run browsers). Moreover, UI-less browsers, such as
HtmlUnit or PhantomJS, require significantly fewer resources than real browsers.

Today there are multiple tools supporting this approach, such as Appvance, which directly
harnesses Selenium and HtmlUnit for load testing, or LoadRunner TruClient protocol,
which use proprietary solutions to achieve low-overhead playback.

24

Nevertheless, questions of supported technologies, scalability, and timing accuracy remain
largely undocumented, so the approach requires evaluation in every specific case.

25

There are cases when recording can't be used at all, or when it can, but with great
difficulty. In such cases, API calls from the script may be an option. Often it is the only
option for component performance testing. Other variations of this approach are web
services scripting or use of unit testing scripts for load testing. And, of course, there is a
need to sequence and parameterize your API calls to represent a meaningful workload.
The script is created in whatever way is appropriate and then either a test harness is
created or a load testing tool is used to execute scripts, coordinate their executions, and
report and analyze results.

The importance of API programming increases in agile / DevOps environments as tests are
run often during the development process. In many cases APIs are more stable than GUI
or protocol communication – and even if something changed, the changes usually can be
localized and fixed – while GUI- or protocol-based scripts often need to be re-created.

26

27

To use a load testing tool with APIs, it should have the ability to add code to (or invoke
code from) your script. And, of course, if the tool's language is different from the language
of your API, you would need to figure out a way to plumb them. Tools, using standard
languages such as C (e.g. LoadRunner) or Java (e.g. Oracle Application Testing Suite)
may have an advantage here.

In any case, you need to understand all of the details of the communication between client
and server to use the right sequences of API calls; this is often the challenge.

Performance tests take time and resources. The larger tests, the more. Running full-scale
realistic tests on each check-in is usually not an options. So a tiered solution is probably
needed – and details, of course, would depend on context. It may be, for example:
-Some simple performance measurements each build.
-Daily mid-size performance tests.
-Periodic large-scale / uptime tests outside CI.

28

Automation means here not only using tools (in performance testing tools are used in most
cases), but automating the whole process including setting up environment, running tests,
and reporting / analyzing results. However “full performance testing automation” doesn’t
look like a probable option in most cases. Using automation in performance testing helps
with finding regressions and checking against requirements only – and it should fit the CI
process (being reasonable in the length and amount of resources required). So large-scale,
large-scope, and long-length tests would not probably fit, as well as all kinds of exploratory
tests. What would be probably needed is a combination of shorter automated tests inside
CI with periodic larger / longer tests outside or, maybe, in parallel to the critical CI path as
well as exploratory tests.

29

The truth is, as usual, in the middle. The answer heavily depends on context. It is a reality
in some cases: usually stable systems / simpler test cases; often single-user; in places with
strong CI culture / CI expertise in house. But it is still rather myth generically as there is not
much tool support for generic use. It is changing, but it still a long way before it becomes
easy and straightforward….

30

To properly place continuous performance testing, it may be worth time to discuss the
place of performance testing in general in performance engineering.

31

There are many discussions about performance, but they often concentrate on only one specific
facet of performance. The main problem with that is that performance is the result of every design
and implementation detail, so you can't ensure performance approaching it from a single angle
only.

There are different approaches and techniques to alleviate performance risks, such as:

Software Performance Engineering (SPE). Everything that helps in selecting appropriate
architecture and design and proving that it will scale according to our needs. Including performance
patterns and anti-patterns, scalable architectures, and modeling.

Single-User Performance Engineering. Everything that helps to ensure that single-user response
times, the critical performance path, match our expectations. Including profiling, tracking and
optimization of single-user performance, and Web Performance Optimization (WPO).

Instrumentation / Application Performance Management (APM)/ Monitoring. Everything that
provides insights in what is going on inside the working system and tracks down performance
issues and trends.

Capacity Planning / Management. Everything that ensures that we will have enough resources
for the system. Including both people-driven approaches and automatic self-management such as
auto-scaling.

Load Testing. Everything used for testing the system under any multi-user load (including all other
variations of multi-user testing, such as performance, concurrency, stress, endurance, longevity,
scalability, reliability, and similar).

Continuous Integration / Delivery / Deployment. Everything allowing quick deployment and
removal of changes, decreasing the impact of performance issues.

And, of course, all the above do not exist not in a vacuum, but on top of high-priority functional
requirements and resource constraints (including time, money, skills, etc.).

32

Every approach or technique mentioned above somewhat mitigates performance risks and
improves chances that the system will perform up to expectations. However, none of them
guarantees that. And, moreover, none completely replaces the others, as each one
addresses different facets of performance.

To illustrate that point of importance of each approach let's look at load testing. With the
recent trends towards agile development, DevOps, lean startups, and web operations, the
importance of load testing gets sometimes questioned. Some (not many) are openly saying
that they don't need load testing while others are still paying lip service to it – but just never
get there. In more traditional corporate world we still see performance testing groups and
most important systems get load tested before deployment. So what load testing delivers
that other performance engineering approaches don’t?

33

There are always risks of crashing a system or experiencing performance issues under
heavy load – and the only way to mitigate them is to actually test the system. Even stellar
performance in production and a highly scalable architecture don't guarantee that it won't
crash under a slightly higher load.

A typical response time curve is shown on the slide, adapted from Andy Hawkes’ post
discussing the topic [HAWK13]. As it can be seen, a relatively small increase in load near
the curve knee may kill the system – so the system would be unresponsive (or crash)
under the peak load.

However, load testing doesn't completely guarantee that the system won’t crash: for
example, if the real-life workload would be different from what was tested (so you need to
monitor the production system to verify that your synthetic load is close enough). But load
testing significantly decreases the risk if done properly (and, of course, may be completely
useless if done not properly – so it usually requires at least some experience and
qualifications).

34

Another important value of load testing is checking how changes impact multi-user
performance. The impact on multi-user performance is not usually proportional to what you
see with single-user performance and often may be counterintuitive; sometimes single-user
performance improvement may lead to multi-user performance degradation. And the more
complex the system is, the more likely exotic multi-user performance issues may pop up.

As it can be seen on the slide, where the black lines represent better single-user
performance (lower on the left side of the graph), but worse multi-user load: the knee
happens under a lower load and the system won’t able to reach the load it supported
before.

35

Another major value of load testing is providing a reliable and reproducible way to apply
multi-user load needed for performance optimization and performance troubleshooting. You
apply exactly the same synthetic load and see if the change makes a difference. In most
cases you can’t do it in production when load is changing – so you never know if the result
comes from your code change or from change in the workload (except, maybe, a rather
rare case of very homogeneous and very manageable workloads when you may apply a
very precisely measured portion of the real workload). And, of course, a reproducible
synthetic workload significantly simplifies debugging and verification of multi-user issues.

Moreover, with existing trends of system self-regulation (such as auto-scaling or changing
the level of services depending on load), load testing is needed to verify that functionality.
You need to apply heavy load to see how auto-scaling will work. So load testing becomes a
way to test functionality of the system, blurring the traditional division between functional
and nonfunctional testing.

36

It may be possible to survive without load testing by using other ways to mitigate
performance risks if the cost of performance issues and downtime is low. However, it
actually means that you use customers to test your system, addressing only those issues
that pop up; this approach become risky once performance and downtime start to matter.

The question is discussed in detail in Load Testing at Netflix: Virtual Interview with Coburn
Watson [PODE14a]. Netflix was very successful in using canary testing –the performance
testing that uses real users to create load instead of creating synthetic load. It makes
sense when 1) you have very homogenous workloads and can control them precisely 2)
potential issues have minimal impact on user satisfaction and company image and you can
easily rollback the changes 3) you have fully parallel and scalable architecture. That was
the case with Netflix - they just traded in the need to generate (and validate) workload for a
possibility of minor issues and minor load variability. But the further you are away from
these conditions, the more questionable such practice would be.

Yes, the other ways to mitigate performance risks mentioned above definitely decrease
performance risks comparing to situations where nothing is done about performance at all.
And, perhaps, may be more efficient comparing with the old stereotypical way of doing load
testing – running few tests just before rolling out the system in production without any
instrumentation. But they still leave risks of crashing and performance degradation under
multi-user load. So actually a combination of different approaches is needed to mitigate
performance risks – but the exact mix depends on your system and your goals. Blindly
copying approaches used, for example, by social networking companies onto financial or e-
commerce systems may be disastrous.

37

While cloud looks quite different from mainframes, there are many similarities between
them, especially from the performance point of view. Such as availability of computer
resources to be allocated, an easy way to evaluate the cost associated with these
resources and implement chargeback, isolation of systems inside a larger pool of
resources, easier ways to deploy a system and pull it back if needed without impacting
other systems.

However there are notable differences and they make managing performance in cloud
more challenging. First of all, there is no instrumentation on the OS level and even
resource monitoring becomes less reliable. So all instrumentation should be on the
application level. Second, systems are not completely isolated from the performance point
of view and they could impact each other (and even more so when we talk about
containers). And, of course, we mostly have multi-user interactive workloads which are
difficult to predict and manage. That means that such performance risk mitigation
approaches as APM, load testing, and capacity management are very important in cloud.

So it doesn’t look like the need in particular performance risk mitigation approaches, such
as load testing or capacity planning, is going away. Even in case of web operations, we
would probably see load testing coming back as soon as systems become more complex
and performance issues start to hurt business. Still the dynamic of using different
approaches is changing (as it was during the whole history of performance engineering).
Probably there would be less need for "performance testers" limited only to running tests –
due to better instrumenting, APM tools, continuous integration, resource availability, etc. –
but I'd expect more need for performance experts who would be able to see the whole
picture using all available tools and techniques.

38

Continuous Integration becomes the main trend impacting performance testing. It is a
reality in simple cases: there is basic out-of-box tool support (in many tools) allowing
quickly put together simple continuous performance test. However what you can do is
rather limited (and differs depending on specific tool ecosystem). And as soon as you need
more, you basically need to implement it yourself. Or wait until tools extend their support
into the area you need – that may be awhile, considering that it would be quite difficult to
implement it well in a generic way.

In more complex cases, it probably would be a lot of custom work. So its expedience would
rather depend on existing risks and available resources. And it is important to understand
that it is just a part of performance testing strategy. Rather important in iterative
development – but still a lot should be done outside CI even with running tests, not to
mention other performance engineering activities starting from any non-trivial performance
analysis.

39

40

References

[BARB11] Barber, S. Performance Testing in the Agile Enterprise. STP, 2011.
http://www.slideshare.net/rsbarber/agile-enterprise

[BUKS12] Buksh, J. Performance Testing is hitting the wall. 2012.
http://www.perftesting.co.uk/performance-testing-is-hitting-the-wall/2012/04/11/

[HAZR11] Hazrati, V. Nailing Down Non-Functional Requirements. InfoQ, 2011.
http://www.infoq.com/news/2011/06/nailing-quality-requirements

[HAWK13] Andy Hawkes, A. When 80/20 Becomes 20/80.
http://www.speedawarenessmonth.com/when-8020-becomes-2080/

[LOAD14] Load Testing at the Speed of Agile. Neotys White Paper, 2014.
http://www.neotys.com/documents/whitepapers/whitepaper_agile_load_testing_en.pdf

[PODE14] Podelko, A. Adjusting Performance Testing to the World of Agile. CMG, 2014.

[PODE14a] Podelko, A. Load Testing at Netflix: Virtual Interview with Coburn Watson. 2014.
http://alexanderpodelko.com/blog/2014/02/11/load-testing-at-netflix-virtual-interview-with-coburn-
watson/

[PODE16] Podelko, A. Reinventing Performance Testing. CMG, 2016.

[PRAT15] Prather, D. The Power of Continuous Performance Testing.
https://www.stickyminds.com/article/power-continuous-performance-testing

[TOWN17] Townshend, S. The Myth of Continuous Performance Testing.
https://www.linkedin.com/pulse/myth-continuous-performance-testing-stephen-townshend

