

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data processing
professionals committed to the measurement and management of computer systems. CMG members are primarily concerned
with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity
management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary
resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2008 International Conference.

For more information on CMG please visit http://www.cmg.org

Copyright 2008 by The Computer Measurement Group, Inc. All Rights Reserved
Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole
or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters,
151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this
publication in whole or in part solely for internal distribution with the member’s organization provided the copyright notice above is
set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those
of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts
in any application or usage. Printed in the United States of America.

http://www.cmg.org

1

Multi-tiered enterprise applications (MTA) feature complex architecture with server farms on web,
application, and database layers. Permanent growth of a number of users, volume of operational
and financial data, as well as complexity of business transactions requires MTA customers
periodically proactively estimate capacity of their installations it terms of a number of servers,
CPU’s per server, speed of CPU, IO, and network, as well as an impact of capacity on
transaction response time.

The paper presents MTA sizing methodology employed by Oracle’s Hyperion performance
engineering group for enterprise performance management application. The methodology uses
both load testing and queuing network modeling tools. Load generation software emulates
workload and collects data to feed queuing network models of MTA. After calibration models
generate estimates of transaction response times and server utilizations for different what-if
sizing scenarios (number of servers, number of CPUs per server, CPU speed, number of
concurrent users etc).

Presented approach provides more accurate sizing estimates and recommendations than empirical
methods.

2

Multi-tiered enterprise applications (MTA) have common characteristics which is essential from a
performance engineering perspective:

Having significantly fewer users than Internet applications because their user communities are
limited to corporation business departments. That number still can be pretty large reaching
thousands of users, but it is never even close to millions.

End user works with MTA not only through browser as in case of Internet application, but also
through multiple Windows front-end programs like Excel, Power Point, as well as programs
specifically designed for different business tasks user interfaces. Pretty often a front-end program
does significant processing of information delivered from servers before making it available to a user.

MTA are always evolving because they have to stay in sync with ever changing demands from
business they support. Businesses fluctuate going through economic cycles with prevailing trend
directed toward business growth. That generates a permanent need for MTA performance tuning and
sizing due to changes in a number of users, volume of data, and complexity of business transactions.

Processing much larger volume of data per a user request than Internet applications because they
sift through terabytes of business records and often implement massive on-line analytical processing
in order to deliver business data rendered as reports, tables, sophisticated forms and templates.

3

Presented how a sizing methodology differs from capacity planning. The term “capacity planning”
means “resource planning”; sizing methodology provides estimates of resources as well as
transaction times.

Transaction response time – main concern of user
Utilization of hardware - main concern of IT departments; it is hot parameter today with the onset of
green datacenters

Wikipedia: “In the context of capacity planning, "capacity" is the maximum amount of work that an
organization is capable of completing in a given period of time. “
Whatis.com: “In information technology, capacity planning is the science and art of estimating the
space, computer hardware, software and connection infrastructure resources that will be needed
over some future period of time. A typical capacity concern of many enterprises is whether resources
will be in place to handle an increasing number of requests as the number of users or interactions
increase. The aim of the capacity planner is to plan so well that new capacity is added just in time to
meet the anticipated need but not so early that resources go unused for a long period. The
successful capacity planner is one that makes the trade-offs between the present and the future that
overall prove to be the most cost-efficient”.

Presented methodology predicts not just resource utilizations, but also transaction response
times which is must-have metric for business users.

4

Part 1 provides basic information of queuing network models

5

A user initiates transaction. Transaction is processed in a server for some period of
time. User waits for processing to be completed BEFORE submitting a request for
new transaction. Server is characterized by service time, user is characterized by
think time. Think time is time between a moment a user receives a reply to
transaction and the moment he/she submits a new transaction.

6

A few facts on models:

- Number of requests in system is equal to the number of system users.
- A request is an equivalent of a business transaction
- By solving model we getting metrics on transaction response times and server
utilization.

7

Part 2 describes step by step methodology of application sizing which is based on
load testing and queuing network modeling.

8

This picture presents a real production system which has application and database
servers and has to support 400 concurrent users.

9

Workload is the most important input parameter for load testing and modeling.
Testing and modeling results can be only as good as the workload specification.
For real production systems, a workload has to describe as closely as possible the
kinds of transactions executed by system users, as well as the number of
transaction executions by one user per hour. A total number of users per each
transaction has to be defined also.

10

A transaction can be compared to a car traveling on highway with toll booths. A toll
booth can be considered as a server. A car (transaction) moves from one toll booth
to another (from one server to another), spending some time in each toll booth
(server). Total time in all toll booths (servers) is the transaction processing time.

Yellow line – utilization of Planning server by transaction
White line – utilization of Database server by transaction

This is how to find time spent by transaction on each server:
1. Turn on monitor and set it up to record CPU utilization on all servers
2. Run one transaction for a user
3. Note CPU activity on each server and time of that activity.

The time a transaction spends on a server is equal to the time a server’s CPU is
working. This is why by monitoring CPU utilization, we can find out how much time a
given transaction spent on a server.

11

Transaction time is broken down by monitoring a single transaction.
Think time is the time between two transactions that have been requested by the
same user. Think time is calculated by dividing one hour by the number of
transactions executed by one user in an hour.

The number of transactions per user per hour is actually a business metric, not a
technical parameter. It can be found by interviewing business users or by monitoring
their activity.

12

This step is all about morphing a real system into a closed queuing model.

User is represented by a think time queue
Web and application servers are represented by Planning queue
Database is represented by database queue.

Transaction leaves think time queue, then receives service in the Planning server
queue as well as in the database queue and returns back to the user. Total time
spent by transaction in both Planning queue and Database queue is transaction
response time.

If there is only one user in a system, than response time is equal to processing
times in both queues. But when there are a number of concurrent users in a system,
than waiting time becomes a substantial component of response time in addition to
processing time.

13

Discipline
One of the following active resource queue disciplines:
FCFS First-come-first-served. Customers are serviced in the order they arrive.
The customer is given its entire service requirement in one burst when its turn
comes up.
FS Fair shared. Each customer receives service at a rate proportional to the
relative shares assigned to this workload.
IS Infinite server. Any customer receives immediate service because enough
servers exist to provide the requirements.
PPRI Preemptive priority. The customer in service is interrupted by any customer
of higher priority. The interrupted customer's service is resumed after completion of
the interrupting customer's service. Within a priority level, the discipline is FCFS.
PRI Non-preemptive priority. The customer in service cannot be interrupted. Within
a priority level, the discipline is FCFS.
PS Processor shared. All customers are slowed down by the same ratio due to
contention at the servers.

14

A request in a closed workload does not enter or leave the system, there is a finite
number of requests. A request traveling in a model represents one transaction
initiated by one user. A number of requests in a queuing model is equal to a
number of application users.

Open workloads have an infinite number of requests.

15

Resource/Workload matrix describes per each transaction which servers each
transaction visited and how long time a transaction was processed on each one.

A column “Service required” defines time spent on a server.

16

We calibrate the model for a single user. Calibration means a model calculation for
a single user and comparison of results with sizing requirements. If there are
discrepancies, than the model has to be modified.

17

Model can predict system characteristics for different number of users.

18

Transaction response time is flat or increases only a little when the number of users
increases, up to the point where queuing starts happening. Then, response time
jumps exponentially. A chart in this slide demonstrates the classical “hockey stick”,
with its angle at step 3 when there were 500 concurrent users.

19

Solved model delivers time spent by each transaction on each server (which is
equal to time in CPU and time waiting for CPU).

20

Model is solved for 1, 300, 500, 700, and 900 users

21

Utilization of Planning server has a downtrend as the number of users grows.
Explanation: more and more requests are queued in Essbase server which reached
almost 100% of its capacity on Step 4. That means Planning server has a less
intense flow of requests.

22

This part of presentation demonstrates sizing methodology “in action”.

On the first step we collected the information necessary for modeling data by
applying a load from concurrent users to a real production system with an enterprise
application.

On the second step we built a queuing model of a system and solved the model
using collected performance data as model input.

On the third step we evaluated results and analyzed different what-if scenarios for
various system architectures

23

To build a model we have to know system architecture as well as specifications of
servers. This slide indicates that system has two servers. It also shows the number
of CPUs per each server and CPU speeds.

24

Load test application collected response times for 16 transactions. Logon and
Logoff transactions are executed only once by each user and can be excluded from
model workload.

Workload has three main transactions: ConsolidateParents, LoadFile, and
ForceCalculate. All remaining transactions will be consolidated into the one called
“Navigate”, because each of the remaining transactions are pretty light in terms of
resource demand. By consolidating transactions we minimize our modeling efforts
without compromising the applicability of the model.

25

Chart demonstrates response time per each transaction for different number of
users: 10, 30, 60, and 80.

There is a pretty interesting effect – transaction ‘ForceCalculate” is faster than
transaction “ConsolidateParents” for 10 and 30 users, but when a number of users
is reaching 60 it becomes significantly slower. This is an indication that transaction
“ForceCalculate” started experience some limitation at the software level – limited
number of threads, or database locking, or shortage of memory.

Later on we will show how that effect can be reflected in a model.

26

Chart shows utilization of both servers for different numbers of users.

27

After running Load test we collected data needed for building and solving model.
We obtained response time for each transaction for different number of users, as
well as utilizations of both servers.

Important to note; calibrated model has to deliver transaction response times and
server utilizations as close as possible to the values measured by during load test.

28

A picture of a computer motherboard demonstrates that a server is much more that
a collection of CPUs and memory. It includes different controllers which by their
nature are specialized computers managing I/O operations, memory operations,
video processing etc.

CPU utilization reported by monitoring tools only relates to the part of a server
which is CPU, but does not reflect processing carried out by other controllers.

29

To factor in the impact of controllers on system performance we included an
additional queuing module representing all controllers.

30

Breaking down transaction time based on server utilization might be correct or somewhat correct.
We should not worry about it for now, we will change those number while calibrating model, but at
that point of modeling process we have to have the values to begin with.

To find out transaction time breakdown we set up a run for a single user repeatedly executing. Time
breakdown is proportional to servers utilizations.

Time transaction spent on a server 1 = 1/ average service rate 1
Time transaction spent on a server 2 = 1/ average service rate 2

Average server 1 utilization =
= average arrival rate / average service rate 1

Average server 2 utilization =
= average arrival rate / average service rate 2

Average server 1 utilization / Average server 2 utilization =
=average service rate 2/ average service rate 1

Finally:
Time transaction spent on a server 1 / Time transaction spent on a server 2 =

= Average server 1 utilization / Average server 2 utilization

31

Now we started to consolidate all input data that describes the workload into the
table. This is the transaction time breakdown

32

After getting filled all the numbers into table we have pretty good realistic
description of production workload generated by a SINGLE user.
We can start populating model with data now.

33

First we define servers.

Time in HFM server per one visit: 1 sec / 1756.33 = 0.000569 sec
Time in Workspace server per one visit: 1 sec / 1749.85 = 0.000571 sec
Time in Controllers server per one visit: 1 sec / 1000 = 0.001 sec

34

Because we observed an impact of software limitations on transaction response
time, we analyzed the system more closely and found that database locking is
affecting response time. This is why we introduced into model passive resources
called “Database_locking” and ‘Database_locking_2”.

Those resources are affecting transactions “ForceCalculate” and “
CalculateParents”. We indicated total capacity of each resource as 120 and later on
we will indicate the size of the resource’s capacity each transaction will take during
its execution.

The process of defining passive resource capacity and the chunk a transaction
takes while execution is iterative – we have to define and redefine those values
during model calibration process.

35

We described that transaction “ForceCalculate” needs Database_locking_2 passive
resource; transaction “ConsolidateParents” needs Database_locking resource.

36

Here we indicated what is the size of passive resource is consumed by each
transaction.

37

We solved the model and got transaction response times. Looks like we were able
to model database locking impact.

38

Model also delivered utilizations of both servers for different number of concurrent
users.

39

Looking into tables we can say that our model is in pretty good accord with data
collected during load test. We can say that we have calibrated our model and we
can now use a model to analyze what-if scenarios.

40

This slide highlights some milestones in a process of model building and calibration.

41

This slide highlights some milestones in a process of model building and calibration.

42

This slide highlights some milestones in a process of model building and calibration.

43

Part 3 describes how to evaluate different architectures and workloads using model.
This part demonstrates the value of modeling approach for application sizing as it
allows quick evaluation of multiple options of system set up.

44

This is self explanatory – fixing locking in a model is simple – just remove Affected
Passive Resources. After that we can solve model and see how good transactions
look if they are not hitting a wall called “Database locking”.

To fix locking in real system is much more challenging, but model actually
encourages to do that because it shows great positive impact of that action.

45

This is how well transactions perform after locking is eliminated. Great incentive for
application designers to take care of software limitations!

46

And the server’s utilization is in a normal range. Now we are well positioned to
check if our system can support more users.

47

Let’s try to increase a number of user to 100, 200, and 400.

48

We still have acceptable transaction time for 100 users, but the system cannot
support more users than that.

49

The reason is – one of our servers reaches 100% of its capacity for 200 users.
What can we do to still accommodate 200 users?

50

Let’s try to add one more HFM server.

51

We have to distribute evenly workload between two HFM servers.

52

We replicated all transactions – one group of transactions is served in one server,
and second group is served in second server. We have to make sure that a number
of users hitting each server is two times lover that a total number of users.

53

This is the task of describing how transactions travels across model.

54

And now we can solve the model and see that two HFM servers still do not deliver
transaction times we are looking for.

55

The reason – still bottleneck on HFM servers.

56

OK, we invested in servers.

57

And our investment pays back – system delivers acceptable response time now for
200 users!

58

Servers have some extra capacity for 200 users, but are maxed out for 400 users.

59

60

61

62

	Multi-tiered applications �sizing methodology �based on load testing and queuing network models����
	Agenda
	Project goal
	Part 1
	Slide Number 5
	Slide Number 6
	Part 2
	Methodology of application sizing��System architecture
	Methodology of application sizing �Workload specification
	Methodology of application sizing �Workload specification (continued)
	Methodology of application sizing �Workload specification (continued)
	Methodology of application sizing �Representation as a queuing network
	Methodology of application sizing � Think time is also active resource
	Methodology of application sizing � Workloads definition
	Methodology of application sizing � Resource/Workload matrix definition
	Methodology of application sizing � Model verification for single user
	Methodology of application sizing � Setting up user population
	Methodology of application sizing � Solving model – transaction response time
	Methodology of application sizing � Solving model – transaction time breakdown
	Methodology of application sizing � Solving model – server utilizations
	Methodology of application sizing � Solving model – server utilizations
	Part 3
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �- Workload Description 2
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �
	Example 1. Model of production system �
	Overview of model of production system �building and calibration
	Overview of model of production system �building and calibration (continued)
	Overview of model of production system �building and calibration (continued)
	Part 4
	What if locking is fixed?
	What if locking is fixed?
	What if locking is fixed?
	What if we have more concurrent users?
	What if we have more concurrent users?
	What if we have more concurrent users?
	What if we deploy second HFM server?
	What if we deploy second HFM server?
	What if we deploy second HFM server?
	What if we deploy second HFM server?
	What if we deploy second HFM server?
	What if we deploy second HFM server?
	What if we add eight more CPUs to each HFM server?
	What if we add eight more CPUs to each HFM server?
	What if we add eight more CPUs to each HFM server?
	Lessons learned
	Conclusions
	References
	Slide Number 62

