CMG'09

A Performance Engineering
Story

with Database Monitoring

Alexander Podelko

apodelko@yahoo.com

Abstract:

This presentation describes a performance engineering project in
chronological order. The product under investigation was a three-tier Java
application which suggests the best offer to a customer according to
provided criteria. The performance issues found turned out to be database-
related. Two configuration options were investigated for the repository:
Microsoft SQL Server and Oracle Database. PerfMon was used for initial
monitoring. While performance issues looked similar for both databases, the
root causes were different. Fixing the issues allowed performance to
increase by about three times for both configurations.



Agenda

e The Story
« Configuration with SQL Server

— Drops in Performance

— Throughput didn't Increase with Load
« Configuration with Oracle DB

— Throughput didn't Increase with Load

We start by describing the project. Then we discuss performance analysis
and troubleshooting for two different system configurations. One

configuration used Microsoft SQL Server for the repository and another used
Oracle DB.



The Story

« Investigation of performance issues

—Java application suggesting the best offer to a
customer according to provided criteria

— The issues turned out to be database -related

— PerfMon was used for initial monitoring

« Some details and findings look interesting
enough to share the story

Disclaimer: The views expressed here are my persona | views only and do not necessarily represent those of my
current or previous employers. All brands and trade marks mention ed are the property of their owners.

This presentation described one performance engineering (PE) project in
chronological order. The product under investigation is a Java application
suggesting the best offer to a customer according to provided criteria. The
name and specific functionality of the product isn't really important to the
story. The purpose of the story is to share specific PE experience and
discuss some issues related to PE activities and database monitoring.
Whatever information about the product is mentioned, is mentioned only to
set up a meaningful context for describing the PE engagement.

The performance issues found turned out to be database-related. PerfMon
was used for initial monitoring.

Some details and findings look interesting enough to share the story. While
some things might be trivial, | still hope that it would contain at least a few
interesting details for everybody who is interested in PE.

| want to state explicitly that the views expressed here are my personal
views only and do not necessarily represent those of my current or previous
employers. All brands and trademarks mentioned are the property of their
owners.



el oad Generator
‘HTTP requests
-LoadRunner

-A custom tool is

available too
-Limited
scripting and

Test Setup

eApp Server
-WebLogic
-The app

.2 for cluster

eDatabase

-Two tested:
SQL Server and
Oracle

-Different
performance
patterns for
each

monitoring
functionality

The system under investigation is a three-tier Java EE (Enterprise Edition)
application.

The first tier is a client, replaced by a load generation tool in this project.
While there is a simple load generation tool shipped with the system, it has
very limited scripting and monitoring functionality and was used only for
validation. HP LoadRunner was used as the main way to generate load.

The second tier is the Java EE application itself deployed on WebLogic
Application Server. The application can work with other application servers,
but they were not tested during the described project. Most tests were done
with one application server, but when cluster is explicity mentioned, two
identical servers were used as application servers and load was balanced
between them.

The third tier is the database tier. Two options were investigated during the
described project: Microsoft SQL Server and Oracle Database. Actually the
described project consists of two major parts: one investigated performance
issues with Microsoft SQL Server and another investigated performance
issues with Oracle Database. Workload and the application were the same,
even performance was close — but issues uncovered were different.



Test Model

« Sample model was used

« Each session is a sequence of 4 requests

— StartSession
— OfferRequest
System generates an offer
— OfferResponse
Client's response: purchased, interested, etc.

— CallResolution

Trigger learning (updating underlying model)

A sample model was used during the project and the workload was pretty
simple: each session consists of four sequential HTTP requests. The
session could be a customer representative call or a web session. As soon
as the session starts (a client identifies himself to the customer
representative or logs into the web site), the OfferRequest request is sent to
our back-end decision-making system. The system finds the best offer based
on the client information according to specific criteria. The offer gets
delivered to the customer and his response (OfferResponse) is sent back to
the system. When the session is ended, the CallResolution request is sent to
the system, which saves all necessary information about the session.

A separate asynchronous process is running in the background to
summarize all this information about the finished sessions and update the
rules used to make decisions ("learning” — a kind of artificial intelligence).

For example, when you call to your bank to solve an issue, the system might
suggest that the best offer for you would be Wolfram Credit Card or Super
Credit Protection. You response gets recorded and eventually the decision-
making model gets updated for your demographic data — so when you call
next time you get an offer that would be irresistible for your demographic.



Agenda

» The Story

« Configuration with SOL Server

— Drops in Performance
— Throughput didn't Increase with Load

« Configuration with Oracle DB

— Throughput didn't Increase with Load

The first part of the project was performance analysis of the configuration
using Microsoft SQL Server for the repository.



SOQL Server

» PerfMon is the native way of monitoring

« SQL Server exposes a lot of counters

Add Counters [ 7] x]

 Use local computer counters

& Selest counters fiom computer Clase
T

Explain
Performance gbiect.

 Allinstances

S atistic:

SOLServerLatches & Select instances from fist
SOLServerlocks
SQLServer:Memory Manager
SOLServerReplication Agents mngl[
50LServerReplication Dist e
SOLServerReplication Logreader

- " Morthwind
SOLServer:Replication Merge pubs

rtd
SOLServerUser Settable

PerfMon is the native way of monitoring for Microsoft SQL Server resource
usage. | am not a DBA and have limited knowledge of database-specific
tools. | have found use of PerfMon for monitoring databases very helpful in
my work as a performance engineer. The name PerfMon (Performance
Monitor) is used during this presentation following the tradition among
performance specialists, although Microsoft doesn't use it after Windows NT
4.0. Now it is referred to instead as System Monitor in Performance Console.

Using PerfMon for monitoring databases has several advantages for
performance engineers / testers:
-Collecting all performance information in one place
-Getting some DB-related metrics on early stages without DBAs or DBA-
level tools
-If issues are observed, there is already some information available
pointing to the area for further investigation

Microsoft SQL Server exposes a lot of useful counters. There many good
sources describing the topic in details, for example:

Monitoring Resource Usage (System Monitor). SQL Server 2008 Books
Online. http://msdn.microsoft.com/en-us/library/ms191246.aspx
Understanding SQL Performance Counters.
http://www.extremeexperts.com/sgl/articles/sglcounters.aspx



SQL Server Issue 1

» Transaction throughput drops to zero

actions

Total Nurnber of Trans

0000 0015 0030 D34S 0100 0115 0130 0145 0200 0215 0230 0245 0300 0315 0330 0345 0400 0415 0430 0445 0500 0515 0530
Elapsad scenario time mm:ss

The initial set of tests demonstrated pretty good performance (it stayed
above 300 requests/sec when performance was stable), but there were
drops to zero throughput at random moments in time.

The initial hypothesis was that it could be the Java garbage collection, but
this turned out to be incorrect. Java garbage collection is a common
scapegoat for such drops in performance, but in reality it is pretty good in the
latest versions of Java and rarely is a problem.

One comment for those who know PerfMon graphs well: the graphs here are
not actual PerfMon graphs, but LoadRunner graphs presenting the same
information. LoadRunner Resource Monitor was used to collect PerfMon
information. The information is the same, but the appearance is a little
different.



A Lot of Available Resources

Windows Resources - UNIX Resources

It
38
36
34
32

3
28
26
24
22

2

abesn einossy

&
b
5
&

18
16
14
12

1
0g
0§
04
02

0000 0045 00:30 0045 0100 0145 O1:30 0145 0200 0215 0230 0245 0300 0315 0330 0345 0400 0415 0430 0445 0500 0515 0530

_Totalppewdl2
slpen202 0023 14,792 3

There were a lot of available resources on both the application and database
servers. The maximum database server CPU utilization was 4.2% (see left
side for the scale), and the maximum application server CPU utilization was
33% (see right side for the scale). Attention: each graph has a different
scale.

CPU utilization on both machines dropped as throughput dropped. Heap
memory usage was also minimal (it was about 100MB with max heap size
set to 1024M). So nothing confirmed the garbage collection theory.



Drops are Correlated with
Deadlocks

R e——

Looking through multiple PerfMon graphs (and using the LoadRunner auto-
correlation feature that worked well in this particular case) | finally got to the
real cause of drops in throughput: deadlocks in the SQL Server database.

10



Further Analysis

« PerfMon shows only that there are key
deadlocks

» Further analysis pointed to the cluster key
of the SDSessionRef table

— Using additional SQL server tools
Trace flags, Enterprise Manager / Current Activity, SQL Profiler

SQL Server version — dependent

Google search gives a lot of good how  -to documents

PerfMon shows the number of deadlocks total and by type. So the only
additional information | found from PerfMon was that it was key deadlocks.

| guess that in many organizations the task of performance engineer would
stop here — probably the further analysis would be conducted by a DBA.
Working in development where no DBAs were involved in the project, |
needed to do such analysis myself.

Further analysis pointed to the cluster key of the SDSessionRef table. For
further analysis SQL Server-specific tools were used, such as trace flags,
Enterprise Manager / Current Activity, and SQL Profiler. A Google search
found me a lot of good how-to documents.

These tools are SQL Server — version dependent. For some reason,
Microsoft SQL Server 2000 was used. Trace flags, for example, were
completely changed in SQL Server 2005. So | don't dive into exact steps
used to get this information.

11



SDSessionRef Locking

« The SDSessionRemoveKeys SP includes:
begin transaction;
delete SDSessionRef with (updlock, holdlock)

where app_name_id = @app_name_id and
session_key in

(@keyl, @key2, @key3, @key4, @key5, @keyb);

commit;

The deadlocks happened around the SDSessionRef table. Looking into the
SDSessionRemoveKeys stored procedure (which was causing deadlocks) |
noticed that with (updlock, holdlock) hints were used.

12



SQL Server Solution 1

« HOLDLOCK is equivalent of SERIALIZABLE
« Wasn't able to find the reason for it

« Simple removal the " with (updlock, holdlock)"
clause eliminates deadlocks and improves
performance

—Up to 364 reqg/sec

It was using the highest isolation level with the HOLDLOCK hint. From the
SQL Server documentation: Makes shared locks more restrictive by holding
them until a transaction is completed, instead of releasing the shared lock as
soon as the required table or data page is no longer needed, whether the
transaction has been completed or not.

During the following discussion, nobody was able to provide a reason for it.
Simple removal of the "with (updlock, holdlock)" clause eliminated deadlocks
and improved performance up to 364 requests/sec.

While | was able to find the problem here, suggest a solution and even test
it, | realized during further discussions that the developers were
uncomfortable with me going so deep. Probably | should just provide
information on where the deadlocks happen and let the developers find and
fix the issue.

13



Agenda

» The Story
» Configuration with SOL Server

— Drops in Performance

— Throughput didn't Increase with Load
« Configuration with Oracle DB

— Throughput didn't Increase with Load

Solving the deadlock problem didn't fully solve the scalability issue.

14



SQL Server Issue 2

A lot of resources available — but throughput
doesn't increase when load increases

After fixing the deadlocks problem, the next issue was that throughput (the
number of requests/sec) doesn't increase after a certain point when load
increases. There were a lot of resources available: the CPU utilization on the
application server was less than 17%.

It is important to understand that the performance of the system was actually
very good. For example, on the throughput graph we see an average
performance of 364 requests / sec on pretty basic equipment. If we speak
about a call center, it means 91 calls /sec (as far as a call consists of 4
requests) or 327,600 calls per hour. Of course, this is for the Sample model
- as models become more sophisticated, performance degrades. But the
Sample model wasn't simplistic — it included all typical functionality.

The reason for the project was not customer complains about performance —
actually for typical models the performance was surprisingly good — but
rather the necessity of providing some sizing / capacity planning
recommendations to customers. It was a paradoxical situation: from one
side, the system demonstrates very good performance with minimal
resources (not the situation you see very often as a performance engineer),
but from another side it can't scale further or even use all resources on the
system. So it is very difficult to provide any meaningful sizing
recommendations. The very good performance of the system was actually
the reason that the issues discussed here were not investigated before — it
just wasn't a priority as compared with functionality.

15



Locking

« As load increases only transaction response
times increase, not throughput

» After analyzing PerfMon data the cause was
found:

— luser: about 200 req/sec, 0 avg lock wait time
—2 users: about 300 req/sec, 50 avg lock wait time
— 10 users: 350 -380 reqg/sec, 6,190 avg lock wait time

—20 users: 350 -390 req/sec, 15,075 avg lock wait
time

After a certain point, further increasing load increased only transaction
response times, not throughput. Throughput stayed the same and then
started to degrade.

After further analysis of PerfMon data the cause was found: with load
increase users just spent more time waiting for locks.

luser: about 200 requests/sec, 0 average lock wait time

2 users: about 300 requests/sec, 50 average lock wait time

10 users: 350-380 requests/sec, 6,190 average lock wait time
20 users: 350-390 requests/sec, 15,075 average lock wait time

Lock wait time (ms): Total wait time (milliseconds) for locks in the last
second.

16



SQL Server Solution 2

» Further analysis pointed to the cluster key
of the SDSessionRef table

— Using additional SQL server tools

« It was found that 'manage sessions' is an
option that may be switched off

» Switching off 'manage sessions' proved that
the work with the SDSessionRef table is the
bottleneck

Using SQL Server specific tools it was found that users waited for locks for
the cluster key of the SDSessionRef table.

In the beginning of every session a record is inserted into the SDSessionRef
table and in the end this record is deleted. Considering the high number of
short sessions, it is not surprising that this particular table (cluster key to be
exact) became an issue.

Discussing the functionality implemented with this table it was found that
actually it may be switched off if there is another way of supporting sessions
(for example, by a load balancer). A test was run with the 'manage sessions'
option off that fully confirmed that the table is the bottleneck.

17



Manage Sessions Off

« Throughput grew to 910 req/sec

Total Transactions per Second

Total Number of Transactions

0000 0100 0200 0300 0400 0500 0800 0700 0800 0300 1000 1100 1200 1300 1400 1500
Elapsed scenario time mim s

System throughput grew to 910 requests/second (from 364 requests/sec).

18



Agenda

» The Story

« Configuration with SQL Server
— Drops in Performance

— Throughput didn't Increase with Load

« Configuration with Oracle DB
— Throughput didn't Increase with Load

Another part of the project was to test the product with Oracle Database.

19



Oracle

» PerfMon interface not set by default

« You could point to any Oracle database
— Even on UNIX
— Could be on any Windows machine

« You need the Oracle client installed

— Not selected by default

It is possible to use PerfMon to monitor any Oracle Database, even if it is on
a UNIX server. PerfMon is not set by default; you need to do a custom
installation and chose it explicitly.

20



Configuration

« Select "Custom"” - check "Oracle Counters for
Windows Performance Monitor"

— Under "Oracle Windows Interfaces”

« Run operfcfg.exe with username, password
and Oracle net service name

—operfcfg —U system —P password -D orcl

—Data in
HKEY LOCAL_MACHINE \SYSTEM\CURRENTCON
TROLSET\SERVICES\ORACLE ver\PERFORMANCE

You should choose the custom installation and under "Oracle Windows
Interfaces" check "Oracle Counters for Windows Performance Monitor".

After installation, you need to run operfcfg.exe with username, password,
and Oracle net service name:
operfcfg —U system —P password —D orcl

All  configuration-related information is saved in the registry,
HKEY_LOCAL_MACHINE\SYSTEM\CURRENTCONTROLSET\SERVICES\
ORACLEver\PERFORMANCE

More details could be found in Oracle documentation (Oracle Database
Platform Guide [version] for Windows, chapter 6. Monitoring a Database on

Windows). See also Edward Whalen's blog
http://ewhalen.blogspot.com/2006/06/oracle-performance-monitoring-on.html
or Thirumoorthy Chettiannan's blog

http://perfhints.blogspot.com/2009/03/monitoring-oracle-databse-using-
perfmon.html

21



And Here They Are

Add Counters

= Use local computer counters

% Select counters from computer: Close I
[“aGENTS = —
E=plain I

Performance object:

Oracle11 Data Files ;I

Objects -
Oracle11 Buffer Cache
Oraclel1 Data Dictionary Cache ¥ Select instances from list:
idraclel] Data Files AR AC EAMIE AR ST ah ]
FWORACLESORADSTANMIRCL W HPFrs

Draciell DEw stats 1 F:A\ORACLE\OR&ADATANORCLY

. F:»ORACLESNORADATANMORCLYE
Oraclell Dynamic Space Manage FuORACLEAWDRADATANDRCLAE

Oraclel1 Free List
T F-AORACLENORADATAVIRCLAL
Qracle11 Libramny Cache _ F-\II'IF!.&I'EI F'xI'IF!.i&DﬁT.-'l'-.'xI'IFH“.I Njhd|
| 3

4l instances

Oracle11 Redo Log Buffer 4
Oraclel1 Sorts
Fagirg File

And you see performance objects for Oracle for the machine where Oracle
Counters for Windows Performance Monitor is installed, not the machine
where the actual Oracle database is. You just point Oracle Counters for
Windows Performance Monitor to where the server is with the operfcfg utility.



More Detalls

« Some internals can be seen in
ORACLE_HOME\dbs\PERFver.ora

— Perfll.ora for Oracle 11

— See sgl requests to the system tables for each
counter

« See Oracle Database Platform Guide
[version] for Windows

— 6. Monitoring a Database on Windows

All counters are explained in detail in Oracle Database Platform Guide
[version] for Windows, chapter 6. Monitoring a Database on Windows.

Some internals can be seen in the ORACLE_HOME\dbs\PERFver.ora file
(Perfll.ora for Oracle 11g). There you can see actual sql requests to the
system tables for each counter.

Still it is very important to understand that there is a limited number of
counters exposed through the PerfMon interface. But using PerfMon for
monitoring databases has several advantages for performance engineers /
testers:
-Collecting all performance information in one place
-Getting some DB-related metrics on early stages without DBAs or DBA-
level tools
-If issues are observed, there is already some information available
pointing to the area for further investigation

23



Oracle Issue

« As load increases only response times
Increase, not throughput

Total Transactions per Second

500
480
250
240
420
400
3|0
360
340
320
300
280
260
240
220
200
180
180
140
120
100

&0

Total Mumber

o000 01:00 0200 0300 04:00 0500 06:00 0700 08:00 0300 10:00 11:00 1200 1300 14:00 1500
Elapsed scenario time mm
293.781

There were the same symptoms for Oracle Database as for SQL Server:
after a certain point, only response times increase as load increases, not
throughput. The maximum was an average of 294 requests / sec.

24



CallResolution

« Mainly CallResolution response times
growing

T
l
2
5
8
2
&
»
£
S
i
»
2
i
5
Ed

Mainly CallResolution response times were growing with load increase,
response times of three other types of requests were growing insignificantly.

25



With Plenty of Resources
Avallable

UNIX Resources

Resource usage

18
15
14
2
0

Windows Resources

8

0000 0100 0200 0300 0400 0500 0800 0700 DEOD 0300 10
Elapsed scenario time mrmiss

Meastiement 0 A Chveage

CPU Utlzation (Unix KemelStaisics}pew202 102

Resource usage

25

0000 0100 0200 0300 0400 0500 O8O0 0700 0B00 0300 1000 1100 1200 1300 1400 1500
Elapsed scenatio
=

And there were plenty of resources available: with 26.1% CPU utilization
the application server and 7.5% CPU utilization on the database server.

on

26



/O Issue?

Windows Resources

@
=
=
i
=
@
2
=
=
@
@

(=53

o1:00 02:00 000 04:00 0s:00 08:00 Q700 0800 0500 10:00 11:00 1200
Elapsed scenario time mm:ss

i
1 % idie Time (PhysicalDisk 1 FIl:pewa02
1 Avg. Disk Queue Length (PhysicalDisk 1 Flkpewd0 1.134
1000 avg Disk nsfer (PhysicalDisk 1 Fllpewd(2 0.003

There were some indications that I1/O was high: Average Disk Queue Length
was about 2 for the physical disk with the Oracle data files.

However other important 1/0O counters didn't indicate that 1/O was the
bottleneck: %Ildle Time was 15.4% (so calculating the real disk utilization as
100-%ldle Time we get 84.6%) and Avg. Disk Sec/Transfer was 6 ms (3ms
for read and 10 ms for write).

27



We Can See DB Files with
High I/O

Windows Resources

@
=
o
i
=l
@
2
5
2
@
a

i

00:00 00:30 01:00 01:30 02:00 02:30 03:00 0330 04:00 04:30 0%:00 05:30 06:00 06:30 07:00 07:30 02:00 05:30 03:00 0230 10:00 10:30 11:00 11:30 1200 1230 1300 1330 1400 14
Elapsed scenario time mm:ss

Gl Er =i N

| Minimum | Average | Masimum | Std. Devistion
phyrds/sec (Dracke1 Data Files FNORACLEADRADATA\DRCLAUSERSO1.DBF):agents B.752 6,331 7.289
phyits/sec (Dracle11 Data Files FNORACLESORADATAVORCL\UNDOTBS01.DBFLagents 1.065 4,655 1173
phywarts/sec [(Oracle1? Data Files FRORACLEAORADATA\ORCLAUSERSO1 DBF] agentS 5.083 114,986 12.081

Oracle performance counters provide [/O information about individual
database files.

28



Manage Sessions Off

« Improves a little: 311 vs. 294 req/sec

Tatal Transactions per Second

580
560
540
520
500
480
460

sactions

440
420
400
380
360
390

Total Murnber of Tran:

320
300
260

260
240

220

0000 0100 0200 0300 0400 0500 OGO0 0700 000 0%00 1000 100 4200 1300 1400 1500

e
317.813

But the root causes limiting throughput were different for Oracle Database.
While for Microsoft SQL Server switching off the 'Manage Session' option
improved performance drastically, for Oracle the improvement was
insignificant: from 294 to 311 requests / second.

29



Thoughts

» Oracle doesn't use locking for isolation

- Don't see anything bad in PerfMon
—1/O is high

» Oracle performance analysis tools don't
report anything useful either

— Complain about high 1/0 and the number of
commits

— Suggest improving I/O speed

Oracle uses versioning, not locking for isolation — so we obviously don't have
locking bottleneck around the session table.

Don't see anything bad in PerfMon except high 1/0.
Oracle performance analysis tools don't report anything useful either:

complain about high I/O and the number of commits, suggest improving 1/0O
speed.

30



Thoughts

« Adding a machine to the App Server cluster
iImproved performance about 30%

— Somewhat contradicts the hypothesis that the
Oracle database is the bottleneck

» Since we don't see any issues in  PerfMon
and Oracle perf tools, maybe it is not on the
Oracle level?

Adding a machine to the App Server cluster improved performance about

30% that somewhat contradicts the hypothesis that the Oracle database is
the bottleneck.

Since we don't see any issues in PerfMon and Oracle perf tools, maybe it is
not on the Oracle level?

31



Software Analysis

» CallResolution should just trigger learning
(model updating)

« Learning record should be passed to an
asynchronous writer process

« Doesn't look like it works exactly this way

— Otherwise we shouldn't see the growth of
CallResolution response times

« Switching off learning improves performance
drastically

CallResolution should just trigger "learning” (model updating). "Learning” is
processing of results of all transactions and updating the information used for
decision making. The learning record should be passed to an asynchronous
writer process.

It doesn't look like it works exactly this way; otherwise we shouldn't see the
growth of CallResolution response times.

Switching off "learning" improves performance drastically.

32



Switching Off Learning

« Improves performance drastically

Total Transactions per Secand

1,000
250
200
850
00
750
700
650
500
550
500
450
400
350
300
250
200
150
100

sactions

Total Mumber of Tran:

50

0

0000 0015 0030 0045 01:00 0445 030 0145 0200 0215 0230 0245 0%00 0315 0330 0345 0400 0415 04:30 0445
Elapsed scenario time mm

875603 1003 375 937.625 210.097

Switching off "learning”, the processing of results of all transactions and
updating the information used for decision making, improves the
performance greatly (up to 876 requests / sec). Although it is definitely not
an option for the real deployments: it disables one of the main advantages of
the system, self-learning.

33



Changes

« After discussions with developers some
changes were made which were described
by the developer as:

—I reworked the way we use the oracle jdbc driver,
changing BLOB/CLOB handling, and cached
some java reflection that was needlessly
repeated.

After discussions with developers some changes were made which
drastically improved performance. The changes were described by the
developer as:

| reworked the way we use the oracle jdbc driver, changing BLOB/CLOB
handling, and cached some java reflection that was needlessly repeated.

Considering my understanding that | already crossed the line in this project
by going too deeply into details, | didn't ask for further clarifications. The
result was definitely a great success, but the developers could be
uncomfortable revealing all findings.

BLOB (Binary Large Objects) / CLOB (Character Large Object) used in the
system are not very large and were never indicated as an issue.

Considering the complains of Oracle diagnostics tools about the high number
of commits, one question was how commits were implemented. According,
for example, to Coskan Gundogar's blog
http://coskan.wordpress.com/2007/03/14/autocommit-with-jdbc-connections/
it should be set properly at JDBC level — it is autocommit by default. Having
autocommit for each SQL request would kill any performance advantage of
batch asynchronous processing.

34



Drastically Better
Performance

Total Transactions per Second

950

900

850

800

750

o
c
2
i)
i
i
c
©
=
«“
=]
o
o
El
=
T
o
=

7

650

600
00:00 01:00 0zoo 0300 0400 0300 06:00 07:.00 0800 0300 10.00 11:00 1200 1300 1400 1300
Elapsed scenario time mm:ss
Color  Scale  Measwement Graph Minimum Awerage Graph Masimum Graph Median (Graph Std. Devigtion
L Pass E005E3 962 606 1024 970625 52316

As the result of the changes performance drastically improved to 963
requests/sec — and this time with full functionality including "learning".

35



New Resource Consumption

UNIX Resources

Resource usage

0000 o100

0200

0300

04:00

0500

0800 070D 0BOC
Elapsed scenario tin

Color Scale Measuement

Mirimum Ave

I CPL Utizalion (Ui Kernel Statistics)pewa02.us. 16 834 761

Windows Resources

Resource usage

cogge

o
s, 00

P

pee ® soo00” ©

000 01:00

0200

0300

0400 0500 OROD 070D 0800 0800 400 1100
Elapsed scenario time mm:ss

12:00

1300 1400 1500

ColorSeale  Measuement

i % Processor Time [Processor_Totaljpewd02 5526 22507
1 g Disk Queus Lengh PhysicalDisk 1 Fipsnd00 218 3552

Masimum
50326
18143

Pinimum Average

Application server CPU utilization grew to 76.1%, database
utilization — to 22.5%, average disk queue — to 3.5.

St Deviation
3769
315

server CPU

36



Story Summary

» Three-tier Java application
— Suggesting the best offer to a customer
» Two options for the repository

— Microsoft SQL Server and Oracle Database

— Similar performance / issues, but different root
causes

» Fixing the issues allowed performance to
increase by about three times

This presentation described a performance engineering project in
chronological order. The product under investigation was a three-tier Java
application which suggests the best offer to a customer according to
provided criteria. The performance issues found turned out to be database-
related. Two configuration options were investigated for the repository:
Microsoft SQL Server and Oracle Database. PerfMon was used for initial
monitoring. While performance issues looked similar for both databases, the
root causes were different: locking for SQL Server and coding for Oracle
Database. Fixing the issues allowed to increase performance about three
times for both configurations.

37



Key Learning

« While the goal was not to generalize and just
tell the story, there are three general points that
seem important to me:

— It is not easy to find the line between responsibil ities
of performance engineers and developers

— PerfMon may be very useful for initial monitoring of
databases

— Blind performance comparison of different
databases often doesn't make much sense

While the goal was not to generalize and just tell the story, there are three
general points that seem important to me:

1) It is not easy to find the line between responsibilities of performance
engineers and developers, and how far performance engineer should go
with investigations. It looks like going too deep may hurt too.

2) PerfMon may be very useful for initial monitoring of databases. Using
PerfMon for monitoring databases has several advantages for
performance engineers / testers:

-Collecting all performance information in one place.

-Getting some DB-related metrics on early stages without DBAs or DBA-
level tools

-If issues are observed, there is already some information available
pointing to the area for further investigation.

3) Blind performance comparison of different databases often doesn't make
much sense. We had very similar issues for two databases, but further
investigation revealed that the root causes were completely different. The
architectures of databases are so different, so the question "which is
faster" doesn't make much sense. The question is how good the specific
product is using advantages of each database and how well it is tuned.

38



Questions ?

Alexander Podelko
apodelko@yahoo.com

http://www.alexanderpodelko.com

39



