
1

1

A Performance Engineering A Performance Engineering 
StoryStory

with Database Monitoringwith Database Monitoring

CMG'09CMG'09

Alexander Podelko Alexander Podelko 
apodelko@yahoo.comapodelko@yahoo.com

Abstract:

This presentation describes a performance engineering project in
chronological order. The product under investigation was a three-tier Java 
application which suggests the best offer to a customer according to 
provided criteria. The performance issues found turned out to be database-
related. Two configuration options were investigated for the repository: 
Microsoft SQL Server and Oracle Database.  PerfMon was used for initial 
monitoring. While performance issues looked similar for both databases, the 
root causes were different. Fixing the issues allowed performance to 
increase by about three times for both configurations.



2

2

AgendaAgenda

�� The StoryThe Story

�� Configuration with SQL Server Configuration with SQL Server 

–– Drops in Performance Drops in Performance 

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

�� Configuration with Oracle DBConfiguration with Oracle DB

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

We start by describing the project. Then we discuss performance analysis 
and troubleshooting for two different system configurations. One
configuration used Microsoft SQL Server for the repository and another used 
Oracle DB.   



3

3

The StoryThe Story

�� Investigation of performance issues Investigation of performance issues 

–– Java application suggesting the best offer to a Java application suggesting the best offer to a 
customer according to provided criteria  customer according to provided criteria  

–– The issues turned out to be databaseThe issues turned out to be database --relatedrelated

–– PerfMonPerfMon was used for initial monitoringwas used for initial monitoring

�� Some details and findings look interesting Some details and findings look interesting 
enough to share the storyenough to share the story

Disclaimer: The views expressed here are my persona l views only Disclaimer: The views expressed here are my persona l views only and do not necessarily represent those of my and do not necessarily represent those of my 
current or previous employers. All brands and trade marks mentioncurrent or previous employers. All brands and trade marks mention ed are the property of their owners.ed are the property of their owners.

This presentation described one performance engineering (PE) project in 
chronological order. The product under investigation is a Java application 
suggesting the best offer to a customer according to provided criteria. The 
name and specific functionality of the product isn't really important to the 
story. The purpose of the story is to share specific PE experience and 
discuss some issues related to PE activities and database monitoring. 
Whatever information about the product is mentioned, is mentioned only to 
set up a meaningful context for describing the PE engagement. 

The performance issues found turned out to be database-related. PerfMon
was used for initial monitoring.

Some details and findings look interesting enough to share the story. While 
some things might be trivial, I still hope that it would contain at least a few 
interesting details for everybody who is interested in PE.

I want to state explicitly that the views expressed here are my personal 
views only and do not necessarily represent those of my current or previous 
employers. All brands and trademarks mentioned are the property of their 
owners.



4

4

Test SetupTest Setup

��Load GeneratorLoad Generator

••HTTP requestsHTTP requests

••LoadRunnerLoadRunner

••A custom tool is A custom tool is 
available tooavailable too

••Limited Limited 
scripting and scripting and 
monitoring monitoring 
functionalityfunctionality

��App ServerApp Server

••WebLogicWebLogic

••The appThe app

••2 for cluster2 for cluster

��DatabaseDatabase

••Two tested: Two tested: 
SQL Server and SQL Server and 
OracleOracle

••Different Different 
performance performance 
patterns for patterns for 
eacheach

The system under investigation is a three-tier Java EE (Enterprise Edition) 
application.

The first tier is a client, replaced by a load generation tool in this project. 
While there is a simple load generation tool shipped with the system, it has 
very limited scripting and monitoring functionality and was used only for 
validation. HP LoadRunner was used as the main way to generate load.

The second tier is the Java EE application itself deployed on WebLogic
Application Server. The application can work with other application servers, 
but they were not tested during the described project. Most tests were done 
with one application server, but when cluster is explicitly mentioned, two 
identical servers were used as application servers and load was balanced 
between them.

The third tier is the database tier. Two options were investigated during the 
described project: Microsoft SQL Server and Oracle Database. Actually the 
described project consists of two major parts: one investigated performance 
issues with Microsoft SQL Server and another investigated performance 
issues with Oracle Database. Workload and the application were the same, 
even performance was close – but issues uncovered were different. 



5

5

Test ModelTest Model
�� Sample model was usedSample model was used

�� Each session is a sequence of 4 requestsEach session is a sequence of 4 requests

–– StartSessionStartSession

–– OfferRequestOfferRequest

System generates an offerSystem generates an offer

–– OfferResponseOfferResponse

Client's response: purchased, interested, etc.Client's response: purchased, interested, etc.

–– CallResolutionCallResolution

Trigger learning (updating underlying model)Trigger learning (updating underlying model)

A sample model was used during the project and the workload was pretty 
simple: each session consists of four sequential HTTP requests. The 
session could be a customer representative call or a web session. As soon 
as the session starts (a client identifies himself to the customer 
representative or logs into the web site), the OfferRequest request is sent to 
our back-end decision-making system. The system finds the best offer based 
on the client information according to specific criteria. The offer gets 
delivered to the customer and his response (OfferResponse) is sent back to 
the system. When the session is ended, the CallResolution request is sent to 
the system, which saves all necessary information about the session.

A separate asynchronous process is running in the background to 
summarize all this information about the finished sessions and update the 
rules used to make decisions ("learning" – a kind of artificial intelligence).     

For example, when you call to your bank to solve an issue, the system might 
suggest that the best offer for you would be Wolfram Credit Card or Super 
Credit Protection. You response gets recorded and eventually the decision-
making model gets updated for your demographic data – so when you call 
next time you get an offer that would be irresistible for your demographic. 



6

6

AgendaAgenda

�� The StoryThe Story

�� Configuration with SQL Server Configuration with SQL Server 

–– Drops in PerformanceDrops in Performance

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

�� Configuration with Oracle DBConfiguration with Oracle DB

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

The first part of the project was performance analysis of the configuration 
using Microsoft SQL Server for the repository.



7

7

SQL ServerSQL Server

�� PerfMonPerfMon is the native way of monitoringis the native way of monitoring

�� SQL Server exposes a lot of countersSQL Server exposes a lot of counters

PerfMon is the native way of monitoring for Microsoft SQL Server resource 
usage. I am not a DBA and have limited knowledge of database-specific 
tools. I have found use of PerfMon for monitoring databases very helpful in 
my work as a performance engineer. The name PerfMon (Performance 
Monitor) is used during this presentation following the tradition among 
performance specialists, although Microsoft doesn't use it after Windows NT 
4.0. Now it is referred to instead as System Monitor in Performance Console. 

Using PerfMon for monitoring databases has several advantages for 
performance engineers / testers:

-Collecting all performance information in one place
-Getting some DB-related metrics on early stages without DBAs or DBA-

level tools 
-If issues are observed, there is already some information available 

pointing to the area for further investigation

Microsoft SQL Server exposes a lot of useful counters. There many good 
sources describing the topic in details, for example:
Monitoring Resource Usage (System Monitor). SQL Server 2008 Books 
Online. http://msdn.microsoft.com/en-us/library/ms191246.aspx
Understanding SQL Performance Counters. 
http://www.extremeexperts.com/sql/articles/sqlcounters.aspx



8

8

SQL Server Issue 1SQL Server Issue 1

�� Transaction throughput drops to zeroTransaction throughput drops to zero

The initial set of tests demonstrated pretty good performance (it stayed 
above 300 requests/sec when performance was stable), but there were 
drops to zero throughput at random moments in time.

The initial hypothesis was that it could be the Java garbage collection, but 
this turned out to be incorrect. Java garbage collection is a common 
scapegoat for such drops in performance, but in reality it is pretty good in the 
latest versions of Java and rarely is a problem.    

One comment for those who know PerfMon graphs well: the graphs here are 
not actual PerfMon graphs, but LoadRunner graphs presenting the same 
information. LoadRunner Resource Monitor was used to collect PerfMon
information. The information is the same, but the appearance is a little 
different.



9

9

A Lot of Available ResourcesA Lot of Available Resources

There were a lot of available resources on both the application and database 
servers. The maximum database server CPU utilization was 4.2% (see left 
side for the scale), and the maximum application server CPU utilization was 
33% (see right side for the scale). Attention: each graph has a different 
scale.

CPU utilization on both machines dropped as throughput dropped. Heap 
memory usage was also minimal (it was about 100MB with max heap size 
set to 1024M). So nothing confirmed the garbage collection theory. 



10

10

Drops are Correlated with Drops are Correlated with 
DeadlocksDeadlocks

Looking through multiple PerfMon graphs (and using the LoadRunner auto-
correlation feature that worked well in this particular case) I finally got to the 
real cause of drops in throughput: deadlocks in the SQL Server database. 



11

11

Further AnalysisFurther Analysis

�� PerfMonPerfMon shows only that there are key shows only that there are key 
deadlocksdeadlocks

�� Further analysis pointed to the cluster key Further analysis pointed to the cluster key 
of the of the SDSessionRefSDSessionRef tabletable

–– Using additional SQL server toolsUsing additional SQL server tools

Trace flags, Enterprise Manager / Current Activity,  SQL ProfilerTrace flags, Enterprise Manager / Current Activity,  SQL Profiler

SQL Server version SQL Server version –– dependentdependent

Google search gives a lot of good howGoogle search gives a lot of good how --to documentsto documents

PerfMon shows the number of deadlocks total and by type. So the only 
additional information I found from PerfMon was that it was key deadlocks.

I guess that in many organizations the task of performance engineer would 
stop here – probably the further analysis would be conducted by a DBA. 
Working in development where no DBAs were involved in the project, I 
needed to do such analysis myself.  

Further analysis pointed to the cluster key of the SDSessionRef table. For 
further analysis SQL Server-specific tools were used, such as trace flags, 
Enterprise Manager / Current Activity, and SQL Profiler. A Google search 
found me a lot of good how-to documents. 

These tools are SQL Server – version dependent. For some reason, 
Microsoft SQL Server 2000 was used. Trace flags, for example, were 
completely changed in SQL Server 2005. So I don't dive into exact steps 
used to get this information.



12

12

SDSessionRefSDSessionRef Locking Locking 

�� The  The  SDSessionRemoveKeysSDSessionRemoveKeys SP includes:SP includes:

begin transaction;begin transaction;

delete delete SDSessionRefSDSessionRef with (with (updlockupdlock, , holdlockholdlock))

where where app_name_idapp_name_id = @= @app_name_idapp_name_id and and 
session_keysession_key inin

(@key1, @key2, @key3, @key4, @key5, @key6);(@key1, @key2, @key3, @key4, @key5, @key6);

commit;commit;

The deadlocks happened around the SDSessionRef table. Looking into the 
SDSessionRemoveKeys stored procedure (which was causing deadlocks) I 
noticed that with (updlock, holdlock) hints were used.



13

13

SQL Server Solution 1SQL Server Solution 1

�� HOLDLOCK is equivalent of SERIALIZABLEHOLDLOCK is equivalent of SERIALIZABLE

�� Wasn't able to find the reason for itWasn't able to find the reason for it

�� Simple removal the "Simple removal the " with (with (updlockupdlock, , holdlockholdlock)" )" 
clauseclause eliminates deadlocks and improves eliminates deadlocks and improves 
performanceperformance

–– Up to 364 Up to 364 reqreq /sec/sec

It was using the highest isolation level with the HOLDLOCK hint. From the 
SQL Server documentation: Makes shared locks more restrictive by holding 
them until a transaction is completed, instead of releasing the shared lock as 
soon as the required table or data page is no longer needed, whether the 
transaction has been completed or not. 

During the following discussion, nobody was able to provide a reason for it. 
Simple removal of the "with (updlock, holdlock)" clause eliminated deadlocks 
and improved performance up to 364 requests/sec.

While I was able to find the problem here, suggest a solution and even test 
it, I realized during further discussions that the developers were 
uncomfortable with me going so deep. Probably I should just provide 
information on where the deadlocks happen and let the developers find and 
fix the issue. 



14

14

AgendaAgenda

�� The StoryThe Story

�� Configuration with SQL ServerConfiguration with SQL Server

–– Drops in Performance Drops in Performance 

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

�� Configuration with Oracle DBConfiguration with Oracle DB

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

Solving the deadlock problem didn't fully solve the scalability issue. 



15

15

SQL Server Issue 2SQL Server Issue 2
�� A lot of resources available A lot of resources available –– but throughput but throughput 

doesn't increase when load increasesdoesn't increase when load increases

After fixing the deadlocks problem, the next issue was that throughput (the 
number of requests/sec) doesn't increase after a certain point when load 
increases. There were a lot of resources available: the CPU utilization on the 
application server was less than 17%.

It is important to understand that the performance of the system was actually 
very good. For example, on the throughput graph we see an average 
performance of 364 requests / sec on pretty basic equipment. If we speak 
about a call center, it means 91 calls /sec (as far as a call consists of 4 
requests) or 327,600 calls per hour. Of course, this is for the Sample model  
- as models become more sophisticated, performance degrades. But the 
Sample model wasn't simplistic – it included all typical functionality. 

The reason for the project was not customer complains about performance –
actually for typical models the performance was surprisingly good – but 
rather the necessity of providing some sizing / capacity planning 
recommendations to customers. It was a paradoxical situation: from one 
side, the system demonstrates very good performance with minimal
resources (not the situation you see very often as a performance engineer), 
but from another side it can't scale further or even use all resources on the 
system. So it is very difficult to provide any meaningful sizing
recommendations. The very good performance of the system was actually 
the reason that the issues discussed here were not investigated before – it 
just wasn't a priority as compared with functionality. 



16

16

LockingLocking

�� As load increases only transaction response As load increases only transaction response 
times increase, not throughputtimes increase, not throughput

�� After analyzing After analyzing PerfMonPerfMon data the cause was data the cause was 
found:found:

–– 1user: about 200 1user: about 200 reqreq /sec, 0 /sec, 0 avgavg lock wait timelock wait time

–– 2 users: about 300 2 users: about 300 reqreq /sec, 50 /sec, 50 avgavg lock wait timelock wait time

–– 10 users: 35010 users: 350 --380 380 reqreq /sec, 6,190 /sec, 6,190 avgavg lock wait timelock wait time

–– 20 users: 35020 users: 350 --390 390 reqreq /sec, 15,075 /sec, 15,075 avgavg lock wait lock wait 
timetime

After a certain point, further increasing load increased only transaction 
response times, not throughput. Throughput stayed the same and then 
started to degrade.

After further analysis of PerfMon data the cause was found: with load 
increase users just spent more time waiting for locks.

1user: about 200 requests/sec, 0 average lock wait time
2 users: about 300 requests/sec, 50 average lock wait time
10 users: 350-380 requests/sec, 6,190 average lock wait time
20 users: 350-390 requests/sec, 15,075 average lock wait time

Lock wait time (ms): Total wait time (milliseconds) for locks in the last 
second.



17

17

SQL Server Solution 2SQL Server Solution 2

�� Further analysis pointed to the cluster key Further analysis pointed to the cluster key 
of the of the SDSessionRefSDSessionRef tabletable

–– Using additional SQL server tools Using additional SQL server tools 

�� It was found that 'manage sessions' is an It was found that 'manage sessions' is an 
option that may be switched offoption that may be switched off

�� Switching off 'manage sessions' proved that Switching off 'manage sessions' proved that 
the work with the the work with the SDSessionRefSDSessionRef table is the table is the 
bottleneckbottleneck

Using SQL Server specific tools it was found that users waited for locks for 
the cluster key of the SDSessionRef table.

In the beginning of every session a record is inserted into the SDSessionRef
table and in the end this record is deleted. Considering the high number of 
short sessions, it is not surprising that this particular table (cluster key to be 
exact) became an issue.

Discussing the functionality implemented with this table it was found that 
actually it may be switched off if there is another way of supporting sessions 
(for example, by a load balancer). A test was run with the 'manage sessions' 
option off that fully confirmed that the table is the bottleneck.



18

18

Manage Sessions OffManage Sessions Off

�� Throughput grew to 910 Throughput grew to 910 reqreq /sec/sec

System throughput grew to 910 requests/second (from 364 requests/sec). 



19

19

AgendaAgenda

�� The StoryThe Story

�� Configuration with SQL Server Configuration with SQL Server 

–– Drops in Performance Drops in Performance 

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

�� Configuration with Oracle DBConfiguration with Oracle DB

–– Throughput didn't Increase with Load Throughput didn't Increase with Load 

Another part of the project was to test the product with Oracle Database. 



20

20

OracleOracle

�� PerfMonPerfMon interface not set by defaultinterface not set by default

�� You could point to any Oracle databaseYou could point to any Oracle database

–– Even on UNIXEven on UNIX

–– Could be on any Windows machineCould be on any Windows machine

�� You need the Oracle client installedYou need the Oracle client installed

–– Not selected by defaultNot selected by default

It is possible to use PerfMon to monitor any Oracle Database, even if it is on 
a UNIX server. PerfMon is not set by default; you need to do a custom 
installation and chose it explicitly. 



21

21

ConfigurationConfiguration

�� Select "Custom" Select "Custom" –– check "Oracle Counters for check "Oracle Counters for 
Windows Performance Monitor"Windows Performance Monitor"

–– Under "Oracle Windows Interfaces"Under "Oracle Windows Interfaces"

�� Run Run operfcfg.exeoperfcfg.exe with username, password with username, password 
and Oracle net service nameand Oracle net service name

–– operfcfgoperfcfg ––U system U system ––P password P password ––D D orclorcl

–– Data in Data in 
HKEY_LOCAL_MACHINEHKEY_LOCAL_MACHINE \\SYSTEMSYSTEM\\CURRENTCONCURRENTCON
TROLSETTROLSET\\SERVICESSERVICES\\ORACLEORACLE verver\\PERFORMANCEPERFORMANCE

You should choose the custom installation and under "Oracle Windows 
Interfaces" check "Oracle Counters for Windows Performance Monitor".

After installation, you need to run operfcfg.exe with username, password, 
and Oracle net service name:

operfcfg –U system –P password –D orcl

All configuration-related information is saved in the registry, 
HKEY_LOCAL_MACHINE\SYSTEM\CURRENTCONTROLSET\SERVICES\
ORACLEver\PERFORMANCE

More details could be found in Oracle documentation (Oracle Database 
Platform Guide [version] for Windows, chapter 6. Monitoring a Database on 
Windows). See also Edward Whalen's blog 
http://ewhalen.blogspot.com/2006/06/oracle-performance-monitoring-on.html 
or Thirumoorthy Chettiannan's blog 
http://perfhints.blogspot.com/2009/03/monitoring-oracle-databse-using-
perfmon.html



22

22

And Here They AreAnd Here They Are

And you see performance objects for Oracle for the machine where Oracle 
Counters for Windows Performance Monitor is installed, not the machine 
where the actual Oracle database is. You just point Oracle Counters for 
Windows Performance Monitor to where the server is with the operfcfg utility.



23

23

More DetailsMore Details

�� Some internals can be seen in Some internals can be seen in 
ORACLE_HOMEORACLE_HOME \\dbsdbs \\PERFver.oraPERFver.ora

–– Perf11.ora for Oracle 11Perf11.ora for Oracle 11

–– See See sqlsql requests to the system tables for each requests to the system tables for each 
countercounter

�� See Oracle Database Platform Guide See Oracle Database Platform Guide 
[version] for Windows[version] for Windows

–– 6. Monitoring a Database on Windows6. Monitoring a Database on Windows

All counters are explained in detail in Oracle Database Platform Guide 
[version] for Windows, chapter 6. Monitoring a Database on Windows.

Some internals can be seen in the ORACLE_HOME\dbs\PERFver.ora file 
(Perf11.ora for Oracle 11g). There you can see actual sql requests to the 
system tables for each counter.

Still it is very important to understand that there is a limited number of 
counters exposed through the PerfMon interface. But using PerfMon for 
monitoring databases has several advantages for performance engineers / 
testers:

-Collecting all performance information in one place
-Getting some DB-related metrics on early stages without DBAs or DBA-

level tools 
-If issues are observed, there is already some information available 

pointing to the area for further investigation



24

24

Oracle IssueOracle Issue

�� As load increases only response times As load increases only response times 
increase, not throughputincrease, not throughput

There were the same symptoms for Oracle Database as for SQL Server: 
after a certain point, only response times increase as load increases, not 
throughput. The maximum was an average of 294 requests / sec. 



25

25

CallResolutionCallResolution

�� Mainly Mainly CallResolutionCallResolution response times response times 
growinggrowing

Mainly CallResolution response times were growing with load increase, 
response times of three other types of requests were growing insignificantly. 



26

26

With Plenty of Resources With Plenty of Resources 
AvailableAvailable

And there were plenty of resources available: with 26.1% CPU utilization on 
the application server and 7.5% CPU utilization on the database server.



27

27

I/O Issue?I/O Issue?

There were some indications that I/O was high: Average Disk Queue Length 
was about 2 for the physical disk with the Oracle data files.

However other important I/O counters didn't indicate that I/O was the 
bottleneck: %Idle Time was 15.4% (so calculating the real disk utilization as 
100-%Idle Time we get 84.6%) and Avg. Disk Sec/Transfer was 6 ms (3ms 
for read and 10 ms for write).



28

28

We Can See DB Files with We Can See DB Files with 
High I/OHigh I/O

Oracle performance counters provide I/O information about individual 
database files.



29

29

Manage Sessions OffManage Sessions Off

�� Improves a little: 311 vs. 294 Improves a little: 311 vs. 294 reqreq /sec /sec 

But the root causes limiting throughput were different for Oracle Database. 
While for Microsoft SQL Server switching off the 'Manage Session' option 
improved performance drastically, for Oracle the improvement was
insignificant: from 294 to 311 requests / second.



30

30

ThoughtsThoughts

�� Oracle doesn't use locking for isolationOracle doesn't use locking for isolation

�� Don't see anything bad in Don't see anything bad in PerfMonPerfMon

–– I/O is highI/O is high

�� Oracle performance analysis tools don't Oracle performance analysis tools don't 
report anything useful eitherreport anything useful either

–– Complain about high I/O and the number of Complain about high I/O and the number of 
commitscommits

–– Suggest improving I/O speedSuggest improving I/O speed

Oracle uses versioning, not locking for isolation – so we obviously don't have 
locking bottleneck around the session table.

Don't see anything bad in PerfMon except high I/O.

Oracle performance analysis tools don't report anything useful either: 
complain about high I/O and the number of commits, suggest improving I/O 
speed.



31

31

ThoughtsThoughts

�� Adding a machine to the App Server cluster Adding a machine to the App Server cluster 
improved performance about 30%improved performance about 30%

–– Somewhat contradicts the hypothesis that the Somewhat contradicts the hypothesis that the 
Oracle database is the bottleneckOracle database is the bottleneck

�� Since we don't see any issues in Since we don't see any issues in PerfMonPerfMon
and Oracle and Oracle perfperf tools, maybe it is not on the tools, maybe it is not on the 
Oracle level?Oracle level?

Adding a machine to the App Server cluster improved performance about 
30% that somewhat contradicts the hypothesis that the Oracle database is 
the bottleneck.

Since we don't see any issues in PerfMon and Oracle perf tools, maybe it is 
not on the Oracle level?



32

32

Software AnalysisSoftware Analysis
�� CallResolutionCallResolution should just trigger learning should just trigger learning 

(model updating)(model updating)

�� Learning record should be passed to an Learning record should be passed to an 
asynchronous writer processasynchronous writer process

�� Doesn't look like it works exactly this way Doesn't look like it works exactly this way 

–– Otherwise we shouldn't see the growth of Otherwise we shouldn't see the growth of 
CallResolutionCallResolution response timesresponse times

�� Switching off learning improves performance Switching off learning improves performance 
drasticallydrastically

CallResolution should just trigger "learning" (model updating). "Learning" is 
processing of results of all transactions and updating the information used for 
decision making. The learning record should be passed to an asynchronous 
writer process.

It doesn't look like it works exactly this way; otherwise we shouldn't see the 
growth of CallResolution response times.

Switching off "learning" improves performance drastically.



33

33

Switching Off LearningSwitching Off Learning

�� Improves performance drasticallyImproves performance drastically

Switching off "learning", the processing of results of all transactions and 
updating the information used for decision making, improves the 
performance greatly (up to 876 requests / sec). Although it is definitely not 
an option for the real deployments: it disables one of the main advantages of 
the system, self-learning.



34

34

ChangesChanges

�� After discussions with developers some After discussions with developers some 
changes were made which were described changes were made which were described 
by the developer as:by the developer as:

–– I reworked the way we use the oracle I reworked the way we use the oracle jdbcjdbc driver, driver, 
changing BLOB/CLOB handling, and cached changing BLOB/CLOB handling, and cached 
some java reflection that was needlessly some java reflection that was needlessly 
repeated. repeated. 

After discussions with developers some changes were made which 
drastically improved performance. The changes were described by the 
developer as:

I reworked the way we use the oracle jdbc driver, changing BLOB/CLOB 
handling, and cached some java reflection that was needlessly repeated. 

Considering my understanding that I already crossed the line in this project 
by going too deeply into details, I didn't ask for further clarifications. The 
result was definitely a great success, but the developers could be 
uncomfortable revealing all findings.

BLOB (Binary Large Objects) / CLOB (Character Large Object) used in the 
system are not very large and were never indicated as an issue. 

Considering the complains of Oracle diagnostics tools about the high number 
of commits, one question was how commits were implemented. According, 
for example, to Coskan Gundogar's blog 
http://coskan.wordpress.com/2007/03/14/autocommit-with-jdbc-connections/
it should be set properly at JDBC level – it is autocommit by default. Having 
autocommit for each SQL request would kill any performance advantage of 
batch asynchronous processing. 



35

35

Drastically Better Drastically Better 
PerformancePerformance

As the result of the changes performance drastically improved to 963 
requests/sec – and this time with full functionality including "learning". 



36

36

New Resource ConsumptionNew Resource Consumption

Application server CPU utilization grew to 76.1%, database server CPU 
utilization – to 22.5%, average disk queue – to 3.5. 



37

37

Story SummaryStory Summary

�� ThreeThree --tier Java applicationtier Java application

–– Suggesting the best offer to a customer Suggesting the best offer to a customer 

�� Two options for the repositoryTwo options for the repository

–– Microsoft SQL Server and Oracle DatabaseMicrosoft SQL Server and Oracle Database

–– Similar performance / issues, but different root Similar performance / issues, but different root 
causes causes 

�� Fixing the issues allowed performance to Fixing the issues allowed performance to 
increase by about three timesincrease by about three times

This presentation described a performance engineering project in
chronological order. The product under investigation was a three-tier Java 
application which suggests the best offer to a customer according to 
provided criteria. The performance issues found turned out to be database-
related. Two configuration options were investigated for the repository: 
Microsoft SQL Server and Oracle Database.  PerfMon was used for initial 
monitoring. While performance issues looked similar for both databases, the 
root causes were different: locking for SQL Server and coding for Oracle 
Database. Fixing the issues allowed to increase performance about three 
times for both configurations.



38

38

Key LearningKey Learning

�� While the goal was not to generalize and just While the goal was not to generalize and just 
tell the story, there are three general points that  tell the story, there are three general points that  
seem important to me:seem important to me:

–– It is not easy to find the line between responsibil ities It is not easy to find the line between responsibil ities 
of performance engineers and developersof performance engineers and developers

–– PerfMonPerfMon may be very useful for initial monitoring of may be very useful for initial monitoring of 
databasesdatabases

–– Blind performance comparison of different Blind performance comparison of different 
databases often doesn't make much sensedatabases often doesn't make much sense

While the goal was not to generalize and just tell the story, there are three 
general points that seem important to me:

1) It is not easy to find the line between responsibilities of performance 
engineers and developers, and how far performance engineer should go 
with investigations. It looks like going too deep may hurt too.

2) PerfMon may be very useful for initial monitoring of databases. Using 
PerfMon for monitoring databases has several advantages for 
performance engineers / testers:

-Collecting all performance information in one place.
-Getting some DB-related metrics on early stages without DBAs or DBA-

level tools 
-If issues are observed, there is already some information available 

pointing to the area for further investigation.

3) Blind performance comparison of different databases often doesn't make 
much sense. We had very similar issues for two databases, but further 
investigation revealed that the root causes were completely different. The 
architectures of databases are so different, so the question "which is 
faster" doesn't make much sense. The question is how good the specific 
product is using advantages of each database and how well it is tuned.



39

39

QuestionsQuestions ??

Alexander PodelkoAlexander Podelko

apodelko@yahoo.comapodelko@yahoo.com

http://http://www.alexanderpodelko.comwww.alexanderpodelko.com


