

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data processing
professionals committed to the measurement and management of computer systems. CMG members are primarily concerned
with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity
management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary
resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2006 International Conference.

For more information on CMG please visit http://www.cmg.org

Copyright 2006 by The Computer Measurement Group, Inc. All Rights Reserved
Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole
or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters,
151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this
publication in whole or in part solely for internal distribution with the member’s organization provided the copyright notice above is
set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those
of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts
in any application or usage. Printed in the United States of America.

http://www.cmg.org

LOAD TESTING: POINTS TO PONDER

Alexander Podelko
Aetna

Testing of multi-user applications under realistic and stress loads remains
the only way to ensure appropriate performance and reliability in
production. The author outlines some issues to consider for performance
testing of distributed business applications and presents the typical pitfalls
from the practical point of view. While the original objective was to contrast
load testing with functional testing, the paper touches many important
points of performance testing.

Introduction

Much has been written about how to design scalable
software, what best practices and design patterns to
use, and even how to build models to predict
performance (for example, [SMITH02] or [MICR04]).
While these topics are very important to create
scalable software, theories and best practices can’t
guarantee a required level of performance. Testing
multi-user applications under realistic, as well as
stress, loads remains the only way to ensure
appropriate performance and reliability in production.

There are many terms to define such kinds of testing:
load, performance, stress, scalability, reliability, and
many others. Despite many efforts to define clear
distinctions between all types of testing, none of them
are widely accepted [STIR02]. One approach can be
that there are no clear distinctions, because these
terms describe testing from somewhat different points
of view, so they are not mutually exclusive.

While goals of each kind of testing can be different, in
most cases they use the same approach: applying
multi-user workload to the system. We mostly use the
term “load testing” further in that paper because we try
to contrast multi-user load testing with single-user,
functional testing. Everything mentioned here applies
to performance, stress, scalability, reliability and other
kinds of testing as far as these features are tested by
applying load.

This paper outlines some issues to consider for
performance testing of distributed business
applications and presents the typical pitfalls from a
practical point of view. The original list of topics was
chosen to contrast load testing with functional testing
and highlights points that are often missed by people
moving into this field from functional testing (as well
as development). Most performance specialists
attending CMG may find some statements below to be
trivial, but the paper still maybe interesting for two
reasons. First, it gives a testing view of these points
and, second, it lists areas that probably should be

discussed if people new to performance management
are running load tests.

This paper is a collection of observations, mainly
related to the performance testing of distributed
business applications.

Load Testing Process Overview

Load testing is emerging as an engineering discipline
of its own, based on “classic” functional testing from
one side, and system performance analysis from
another side. The typical load testing process is
depicted on figure 1 (some variations are in
[BARB04], [MICR04]).

Fig.1 Load testing process

We explicitly define two different steps; “define load”
and “create test assets”. The “define load” step is the
logical description of the load we want to apply (like
“that group of users login, navigate to a random item
in the catalog, add it to the shopping cart, pay, and

Collect Requirements

Create Test Assets

Define Load

Run Tests

Analyze Results

Done

Modify System

Goals are met
Goals are not met

logout with average 10 second think time between
actions”). The “create test assets” step is the
implementation of this workload, and conversion of
the logical description into something that will
physically create that load during the “run tests” step.
While for manual testing that can be just the
description given to each tester, usually it is
something else in load testing – a program or a script.

Quite often load testing goes hand-in-hand with
tuning, diagnostics, and capacity planning. Sometimes
it is difficult to separate them. For example,
performance testing of a mistuned system isn’t too
meaningful. Really the load testing process implies
tuning and modification of the system to achieve the
goals.

Load testing is not a one-time procedure. It spans
through the whole system development life cycle
([SMITH02], [MICR04]). It may start from technology
or prototype scalability evaluation, continue through
component / unit performance testing into system
performance testing before deployment and follow up
in production (to troubleshooting performance issues
and test upgrades / load increases).

What to Test

Even in functional testing, we could have an unlimited
number of test cases and the art of testing is to
choose a limited set of test cases that should check
the product functionality in the best way with given
resource limitations. It is much worse with load
testing. Each user can follow a different scenario (a
sequence of functional steps) and even the sequence
of steps of one user against the steps of another user
could affect the results significantly.

Load testing can’t be comprehensive. Several
scenarios (use cases, test cases) should be chosen.
Usually they are the most “typical” scenarios and the
most probable for users to follow. It is a good idea to
identify several classes of users – for example,
“administrators”, “operators”, “users”, and “analysts”. It
is simpler to identify “typical” scenarios for a particular
class of users. With that approach rare use cases are
ignored. For example, many “administrator” activities
can be omitted as far as there are few of them
compared with other activities.

Another important criterion is risk. If a “rare” activity
has significant inherent risk, it can be a good idea to
add it to the scenarios to test. For example, if
database backups can significantly affect performance
and need to be done in parallel with regular work, it
makes sense to include a “backup” scenario in
performance testing.

“Code coverage” usually doesn’t make much sense in
load testing. It is important to know what parts of code
are being processed in parallel by different users (that
is almost impossible to track), not that particular code
path was executed. Perhaps it is possible to speak
about “component coverage”, making sure that all
important components of the system are involved in
performance testing. For example, if different
components are responsible for printing HTML and
PDF reports, it is a good idea to include both kinds of
printing in the testing scenarios.

Requirements

In addition to functional requirements (which are still
valid for performance testing: the system still should
do everything it is designed for under load) there are
three other classes of requirements:

• Response times - how fast the system handle

individual requests or what a real user would
experience

• Throughput - how many requests the system can

handle

• Concurrency - how many users or threads work

simultaneously.

All classes are vital. Good throughput with long
response times often is unacceptable as well as good
response times for a few users.

Acceptable response times should be defined in each
particular case. A response time of 30 minutes can be
excellent for a big batch job, but absolutely
unacceptable for getting a web page in an on-line
store. Although it is often difficult to draw the line here,
this is rather a common sense decision. Keep in mind
that for multi-user testing we get a lot of response
times for each transaction, so we need to use some
aggregate values like averages or percentiles (for
example, 90% of response times are less than this
value).

Throughput defines load on the system. Unfortunately,
quite often the number of users (concurrency) is used
to define the load for interactive systems instead of
throughput. Partially because that number is often
easier to find, partially because it is the way load
testing tools define load. Without defining what each
user is doing and how intensely (i.e. throughput for
one user), the number of users is not a good measure
of load. For example, if there are 500 users running
short queries each minute, we have throughput of
30,000 queries per hour. If the same 500 users are
running the same queries, but one per hour, the
throughput is 500 queries per hour. So there are the
same 500 users, but a 60-time difference between

loads and respectively of the hardware requirements
for the system.

The intensity of load can be controlled by adding
delays (often referred as “think time”) between actions
in scripts or harness code. So one approach is to start
with the total throughput the system should handle,
then find the number of concurrent users, get the
number of transactions per user for the test, and then
try to set think times to ensure the proper number of
transactions per user.

Finding the number of concurrent users for a new
system can be tricky too. Usually information about
real usage of similar systems can help to make the
first estimation. It is important to understand what
users you are speaking about. For example,
according [COGN04] for analytical reporting 10% of
named (registered in the system) users are active
(logged on) and 10% of active users run concurrent
requests (so 1,000 named users matches 100 active
users and matches 10 concurrent users). Of course, it
heavily depends on the system.

Workload Implementation

If we work with a new system and never ran a load
test against it before, the first question is how to
create load. Are we going to generate it manually, use
a load testing tool, or create a test harness?

Manual testing could sometimes work if we want to
simulate a small number of users. However, even if
well organized it will introduce some variation in each
test, making the test less reproducible. Workload
implementation using a tool (software or hardware) is
quite straightforward when the system has a pure
HTML interface, but even if there is an applet on the
client side, it can become a very serious research
task, not to mention having to deal with proprietary
protocols. Creating a test harness requires more
knowledge about the system (for example, an API)
and some programming. Each choice requires
different skills, resources, and investments. Therefore,
when starting a new load-testing project, the first thing
to do is to decide how the workload will be
implemented and check that this way really works.
More deeply available options are covered in
[PODE05] and [LOAD06].

As soon as we decide how to create the workload, we
need to find a way to verify that the workload is really
being applied.

Workload Verification

Unfortunately, a lack of error messages during a load
test does not mean that the system worked correctly.
A very important part of load testing is workload

verification. We should be sure that the applied
workload is doing what it is supposed to do and that
all errors are caught and logged. It can be done
directly by analyzing server responses or, in cases
when this is impossible, indirectly. For example, by
analyzing the application log or database for the
existence of particular entries.

Many tools provide some way to verify workload and
check errors, but a complete understanding of what
exactly is happening is necessary. For example,
Mercury Interactive’s LoadRunner reports only HTTP
errors for Web scripts by default (like 500 “Internal
Server Error”). If we rely on the default diagnostics,
we could still believe that everything is going well
when we get “out of memory” errors instead of the
requested reports. To catch such errors, we should
add special commands to our script to check the
content of HTML pages returned by the server.

Data

The size and structure of data could affect load test
results drastically. Using a small sample set of data
for performance tests is an easy way to get
misleading results. It is very difficult to predict how
much the data size affects performance before real
testing. The closer the test data is to production data,
the more reliable the test results.

Running multiple users hitting the same set of data
(for example, playback of an automatically created
script without proper modifications) is an easy way to
get misleading results. This data could be completely
cached and we get much better results than in
production, or it could cause concurrency issues and
we get much worse results than in production. So
scripts and test harnesses usually should be
parameterized (fixed or recorded data should be
replaced with values from a list of possible choices) so
that each user uses a proper set of data. The term
“proper” here means different enough to avoid
problems with caching and concurrency, which is
specific for the system, data, and test requirements.

Another easy trap with data is to add new data during
the tests without special care. Each new test would
create additional data, so each test would be done
with different amount of data. One way of running
such tests is to restore the system to the original state
after each tests. Or additional tests could be done to
prove that varying amounts of data does not change
the outcome of that particular test.

Exploring the System

At the beginning of a new project, it is good practice to
run some tests to figure out how the system behaves
before creating formal plans. If no performance tests

have been run, there is no way to predict how many
users the system can support and how each scenario
will affect the overall performance. Modeling can help
here to find the projected level of performance, but a
bug in the code or an environmental issue can dwarf
scalability.

It is good to check that we do not have any functional
problems: Is it possible to run all requested scenarios
manually? Is there any performance issue just with
one or several users? Are there enough computer
resources to support the requested scenarios? If we
have a functional or performance problem with one
user, it should be fixed before starting performance
testing with that scenario.

Even if there are big plans for performance testing, an
iterative approach fits better here. As soon as a new
script is ready – run it. That gives an understanding
how well the system will handle the specific load. The
results we get can help to improve plans and find
many issues early. By running tests we are learning
the system and can find out that the original ideas
about the system were not completely correct. A
“waterfall” approach, when all scripts are created
before running any multi-user test, is dangerous.
Issues may not be discovered until later resulting in a
lot of work needing to be redone.

Unspecified Requirements

Usually when people are talking about performance
testing, they do not separate it from tuning,
diagnostics, or capacity planning. “Pure” performance
testing is possible only in rare cases when the system
and all optimal settings are well known. Some tuning
activities are usually necessary at the beginning of the
testing to be sure that the system is properly tuned
and the results are meaningful. In most cases, if a
performance problem is found, it should be diagnosed
further up to the point when it is clear how to handle it.
Generally speaking, “performance testing”, “tuning”,
“diagnostics”, and “capacity planning” are quite
different processes and excluding any of them from
the test plan (if they are assumed) will make it
unrealistic from the beginning.

Time

Each performance test usually takes more time than a
functional test. Regularly we are interested in the
steady mode during load testing. It means that all
users need to log in and work for some time to be
sure that we see a stable pattern of performance and
resource utilization. Measuring performance during
transition periods can be misleading. The more users
we simulate, the more time we usually need to get into
the steady mode. Moreover, some kinds of testing
(reliability, for example) can require a significant

amount of time – from several hours to several days
or even weeks. Therefore, the number of tests that
can be run per day is limited. Considering that is
especially important during tuning or diagnostics,
when the number of tests to run is unknown and can
be big enough.

Simulating real users requires time, especially if it isn’t
just repeating actions like entering orders, but some
kind of process with some actions following others.
We can’t just squeeze several days of regular work in
fifteen minutes for each user. This is not a simulation
of real work. It should be a slice of work, not a
squeeze.

In some cases we can make load from each user
more intensive and respectively decrease the number
of users to keep the total volume of work (throughput)
the same. For example, simulate 100 users running a
small report each five minutes instead of 300 users
running that report each fifteen minutes. In this case,
we can speak about ratio of simulated users and real
users (1:3 for that example). It is especially useful
when we need to make a lot of tests during the tuning
of the system or trying to diagnose the problem to see
the results of changes quickly. Quite often that
approach is used when there are license limitations.

Still “squeezing” should be used in addition to full-
scale simulation, not instead of it. Each user
consumes additional resources for connections,
threads, caches, etc. The exact impact depends on
the system implementation, so simulation of 100 users
running a small report each ten minutes doesn’t
guarantee that the system supports 600 users running
that report each hour. Moreover, tuning for 600 users
can differ significantly from tuning for 100 users. The
larger the difference between the number of simulated
and real users, the more need to run a test with all
users to be sure that the system supports that number
of users and that the system is properly tuned.

Process

Three specific features of load testing affect the
testing process and often require more close work
with development to fix problems than when doing
functional testing. First, a reliability or performance
problem quite often blocks further performance testing
until the problem is fixed or a workaround is found.
Second, usually the full setup, which often is very
sophisticated, should be used to reproduce the
problem. Keeping the full setup for a long time can be
expensive or even impossible. Third, debugging
performance problems is a quite sophisticated
diagnostic process usually requiring close
collaboration between a performance engineer
running tests and analyzing the results and a
developer profiling and altering code. Special tools

may be necessary: many tools, like debuggers, work
fine in a single-user environment, but do not work in
the multi-user environment, due to huge performance
overheads.

These three features make it difficult to use an
asynchronous process in load testing (often used in
functional testing: testers look for bugs and log them
into a defect tracking system, and then the defects are
prioritized and independently fixed by development).
What is often required is the synchronized work of
performance engineering and development to fix the
problems and complete performance testing.

Take a Systematic Approach to Changes

The tuning and diagnostic processes consist of
making changes in the system and evaluating their
impact on performance, or problems. It is very
important to take a systematic approach to these
changes. It could be, for example, the traditional
approach of “one change at a time” (also often
referred as “one factor at a time” - OFAT) or using
design of experiments (DOE) theory. “One change at
a time” here does not mean changing only one
variable; it can mean changing several related
variables to check a particular hypothesis.

The relationship between changes in the system
parameters and changes in the product behavior is
usually quite complex. Any assumption based on
common sense can be wrong. A system’s reaction
can be quite the opposite under heavy load. So
changing several things at once without a systematic
approach will not give an understanding how each
change affects results. This could mess up the testing
process and lead to incorrect conclusions. All changes
and their impacts should be logged to allow rollback
and further analysis.

Result Analysis

Load testing results usually bring much more
information than just passed/failed. Even if we do not
need to tune the system or diagnose a problem, we
usually should consider not only transaction response
times for all different transactions (usually using
aggregating metrics like average response times or
percentiles), but also other metrics like resource
utilization. Result analysis of load testing for
enterprise-level systems can be quite difficult and
should be based on a good working knowledge of the
system and the requirements and involve all possible
sources of information: measured metrics, results of
monitoring during the test, all available logs, and
profiling results (if available). Not only for all
components of the system under test, but also for load
generation environment. For example, a heavy load

on load generator machines can completely skew
results and the only way to know that is to monitor
those machines.

There is always a variation in results of multi-user
tests due to minor differences in the test environment.
If the difference is large, it is worth the effort to
determine why and adjust tests accordingly. For
example, restart the program, or even re-boot the
system, before each test to eliminate caching effects.

References

[BARB04] S.Barber, “Beyond Performance Testing”,
2004. http://www.perftestplus.com/pubs.htm

[COGN04] “Cognos ReportNet Scalability
Benchmark”, 2004.
http://www.cognos.com/products/whitepapers/wp_rep
ortnet_scalability_01.pdf

[JAIN91] R. Jain, "The Art of Computer Systems
Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling",
Wiley, 1991.

[LOAD06] “Load Testing Strategy”, Borland white
paper, 2006.
http://www.borland.com/resources/en/pdf/white_paper
s/load_test_whitepaper.pdf

[MCWH04] M.McWhinney, “SEI Load Test Planning
Process”, 2004.
http://www.portata.com/seiplanningprocess.htm

[MICR04] Improving .NET Application Performance
and Scalability, Microsoft Press, 2004.
http://msdn.microsoft.com/library/default.asp?url=/libra
ry/en-us/dnpag/html/scalenet.asp

[PODE05] A.Podelko, “Workload Generation: Does
One Approach Fit All?” CMG, 2005.

[SMITH02] C.U. Smith, L.G.Williams, “Performance
Solutions”, Addison-Wesley, 2002.

[STIR02] S.Stirling, “Load Testing Terminology”,
Quality Techniques Newsletter, September 2002.
http://www.soft.com/News/QTN-Online/qtnsep02.html

*All mentioned brands and trademarks are the
property of their owners

	CMG 2006 Main Menu
	Papers by Subject
	Papers by Author
	Acrobat® Help
	Search

