

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data processing
professionals committed to the measurement and management of computer systems. CMG members are primarily concerned
with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity
management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary
resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2005 International Conference.

For more information on CMG please visit www.cmg.org

Copyright 2005 by The Computer Measurement Group, Inc. All Rights Reserved
Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole
or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters,
151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this
publication in whole or in part solely for internal distribution with the member’s organization provided the copyright notice above is
set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those
of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts
in any application or usage. Printed in the United States of America.

WORKLOAD GENERATION: DOES ONE APPROACH FIT ALL?

Alexander Podelko
Hyperion Solutions

alexander_podelko@hyperion.com

A must task in load testing is workload generation: how to apply load to your system. It is important to
understand all possible options; a single approach may not work in all situations. The main choices
are to generate workload manually, to use a load testing tool or to create a program to do it. Many
tools allow you to use different ways of recording/playback and programming. This paper discusses
pros and cons of each approach based mainly on experience with distributed business applications.

Much has been written about how to design scalable
software, what best practices and design patterns to
use, and even how to build models to predict
performance (for example, [SMITH02] or [MICR04]).
While these topics are very important to create
scalable software, theories and best practices can’t
guarantee a required level of performance. Testing
multi-user applications under realistic, as well as
stress, loads remains the only way to ensure
appropriate performance and reliability in production.

Many terms are used to describe such kinds of
testing, for example: load testing, performance testing,
stress testing, scalability testing, reliability testing.
Despite many efforts to define clear distinctions
between them, none of them are widely accepted
[STIR02]. There are no clear distinctions because
these terms describe testing from different points of
view.

Without diving too deeply in details, we can define:

• load testing is testing when you apply load to
the system,

• performance testing is testing the
performance of the system,

• stress testing is testing how the system
behaves under stress (heavy load),

• scalability testing is testing how the system
scales with increasing load and/or resources.

Quite often, similar processes are used in all these
kinds of testing, and a term can be chosen depending
on what looks most important.

If you run a test simulating many users and measuring
response times, what should you name your test? You
can probably refer to it as the load test or the
performance test, and both would be correct. They are
not synonyms, they describe different sides of the
test.

The term “load testing” is used in this paper because
we are investigating ways to create load. Everything
mentioned here applies to performance, stress,

scalability, reliability and other kinds of testing - so
long as the system is tested by applying load (while,
for example, reliability testing by switching off the
power is another story).

Based on classic functional testing from one side, and
on system performance analysis from another side,
load testing is emerging as an engineering discipline
of its own. Quite often load testing is combined with
tuning, diagnostics, and capacity planning. Sometimes
it is difficult to separate them. For example,
performance testing of a mistuned system isn’t too
meaningful. The typical load testing process is
depicted on figure 1 (for variations see [BARB04],
[MICR04]).

Fig.1 Load testing process

We explicitly define two different steps, “define load”
and “create test assets” here. The “define load” step
means the logical description of the load we want to
apply (for example, a group of users that login,
navigate to a random item in the catalog, add it to the

Collect Requirements

Create Test Assets

Define Load

Run Tests

Analyze Results

Done

Tune System

Goals are met

Goals are not met

shopping cart, pay, and logout with an average 10
second think time between each pair of actions). The
“create test assets” step means to convert the logical
description into something that will physically create
load during the “run tests” step. While for manual
testing it can just be a description given to each tester,
usually it is something else in load testing – a program
or a script.

Before you can move forward from “define load” to
“create test assets” you need to decide how you are
going to generate that load. Load generation can be a
simple technical step when you know how to do it for
your system (compared with other non-trivial steps
like collecting requirements, defining load, or
analyzing results). Unfortunately, quite often it is a
very challenging task for a new system, up to being
impossible in the given time frame. It is important to
understand all possible options, a single approach
may not work in all situations. The main choices are to
generate workload manually (really an option only if
you have few users), use a load testing tool (software
or hardware), or create a program to do it. Many tools
allow you to use different ways of recording/playing
back and programming.

The following provides a description of different
approaches to aid in making realistic decisions about
which approach and which tool may be most
appropriate. The material is based on experience with
business applications, so limitations may exist for
dealing with other environments.

Record and Playback: Virtual Users

The mainstream approach of load testing (at least for
distributed business and Internet applications) is
recording communication between two tiers of the
system and playing back the automatically-created
script (usually, of course, after proper
parameterization). Tools used for that are usually
referred as “load testing tools” and users simulated by
such tools are usually referred as “virtual users”. The
real client-side software isn’t necessary to replay the
scripts, so the number of simulated virtual users can
be high; it is theoretically limited only by available
hardware (each tool has specific hardware
requirements depending on the type and complexness
of scripts).

Fig.2 Record and playback approach, virtual users

Both recording and playback happen between the
tiers, so the protocol used between the client and the
server is extremely important. Other factors, like what
language was used to develop the system, what
platform the server is deployed on, etc. are usually
irrelevant for scripting (although they can give some
hints about what protocol is used for communication).

The process is reasonably straightforward when you
test a simple Web site or a simple Web application
with a thin client. Even a beginner in load testing can
quickly create a few scripts and run tests. That is one
reason why the record and playback approach is so
popular. However, there is a trap in that easiness:
load testing really embraces much more. Load should
be validated for correctness (if you don’t see errors in
the load testing tool it doesn’t always mean that it
works properly) and realism (using unrealistic
scenarios is the easiest way to get misleading
results). Moreover, load generation is only one step in
load testing, there are many other important parts (like
getting requirements and doing results analysis), as
well as related activities (like tuning or diagnostics).

Unfortunately, scripting can be challenging even for a
Web application. Recording a script and making it
work can be a serious research task, often including
many try-and-fail iterations. A good load testing tool
can help if it supports your protocol.

Load Testing Tools

A few tools support the recording and playback
approach for a variety of protocols. Usually they are
the most mature commercial products. Such
enterprise-level load testing tools have many
important features. The following features could be
considered typical for such tools:

• Ability to record scripts automatically for
different protocols

• Powerful scripting language

• Simulating numerous users (limited mainly by
hardware)

• Coordinated test execution from several
computers

• Centralized test management and result
analysis

• Support for different environments

• Ability to monitor environments

• Ability to use other approaches to load
generation (considered in detail below)

o Ability to simulate GUI users as well
as virtual users

o Ability to extend scripting language
and make external calls

• Interface with other development and test
software: requirements gathering, test

 Load Testing Tool

Virtual Users

ServerLoad Generator

Application

Network

management, defect tracking, configuration
management, etc.

The list of supported features differs from tool to tool.
Examples of powerful multi-protocol tools are Mercury
LoadRunner (www.mercury.com), Segue
SilkPerformer (www.segue.com), IBM Rational
Performance Tester (www.ibm.com/software/rational),
and Compuware QALoad (www.compuware.com). For
a Web-only commercial tool, Empirix e-Load
(www.empirix.com), having some features of
enterprise-level load testing tools, probably is best
known.

The five above-mentioned vendors accounted for 95%
of the worldwide distributed automated software
quality commercial tools market in 2003 according to
IDC: Mercury 55.6%, IBM/Rational 22.5%,
Compuware 9.7%, Segue 4.1%, and Empirix 3.1%
[IDC04]. These numbers are not from load testing
tools alone, but the statistics still give an idea about
the market.

Many other specialized tools are available, especially
for Web technologies. If the number of technologies
you’ll use is limited, it makes sense to check out such
tools. Specialized tools weren’t a real option for us
because of the multiple technologies we have been
working with. Most specialized tools can be found in
these two lists:
www.softwareqatest.com/qatweb1.html
www.testingfaqs.org/t-load.html
Not all listed tools support the record and playback
approach; some require programming.

Recording abilities of tools differ significantly.
Enterprise-level load testing tools usually can work in
more sophisticated environments and do more
correlation automatically (like getting real cookies,
session ids, etc. from the server instead of recorded
values).

Another area of differentiation is infrastructure (test
coordination, results analysis, monitoring, integration
with other tools, etc.). Most inexpensive or free tools,
unfortunately, are weak in this regard.

One more tool worth mentioning is Microsoft
Application Center Test (ACT) coming with Visual
Studio .Net, although it is rather limited in functionality.
The Visual Studio 2005 Team System for Software
Testers will include a much more powerful load testing
tool.

There are many open source tools. For example, the
following link included 21 tools at the moment of
writing:
www.opensourcetesting.org/performance.php

Unfortunately most tools have limited functionality.
Probably OpenSTA and Apache JMeter are the best
known and most mature open source tools.

OpenSTA (www.opensta.org) is a web load testing
tool originally developed as a commercial tool by
Cyrano. OpenSTA stands for Open Systems Testing
Architecture. Another branch of the Cyrano code is a
commercial tool QuotiumPRO from Quotium
(www.quotium.com).

Apache JMeter (jakarta.apache.org/jmeter) is a 100%
pure Java tool for load and performance testing HTTP
and FTP servers as well as arbitrary database queries
(via JDBC).

Probably the most ambitious open source project is
the Eclipse Test & Performance Tools Platform
(http://www.eclipse.org/tptp/index.html), but it isn’t
quite clear what load testing functionality is available
right now.

Load testing appliances (for example, Spirent
Avalanche) can be useful for simulating a large
number of simple Web users. Usually, scripting is
limited. It is interesting that Spirent is a partner of
Mercury and they position their hardware load
generator as a complement to LoadRunner to create
heavy, but simple, background load.

Choosing a Load Testing Tool

Generally, it would be wrong to say that one tool is
better than another, but one tool can fit better in a
particular environment than another. Many factors
beyond functionality can impact the choice. Here are
some:

• familiarity with the tool and other tools from
that vendor

• familiarity with languages the tool uses (many
are based on standard languages such as C,
Basic, or Java)

• support

• price

• vendor’s prospective

On the other hand, it is always good to keep in mind
that a load testing tool is only a tool. While you
probably need a sophisticated set of tools to create a
luxury furniture set, you need only a hammer to nail a
picture to the wall.

Limitations

We have been using the record and playback
approach in most projects, but, unfortunately, it has
several serious limitations:

• It usually doesn’t work for testing components.

• Each particular load testing tool supports a
limited number of technologies.

• The workload validity in case of sophisticated
logic on the client side is not guaranteed.

These limitations are usually not a problem in the
case of simple web applications using a browser as a
client, but they become a serious problem when you
need to test different protocols across the whole
software lifecycle.

Each load testing tool supports a limited number of
technologies (protocols). New or exotic technologies
are not usually on the list. Vendors of load test tools
add new supported protocols continually, but we often
do not have time to wait for the specific protocol to be
added – as soon as we get a new product we need to
test it.

For example, we were not able to use recording for
the SMB (Server Message Block) protocol, later
succeeded by the Common Internet File System
(CIFS) protocol. It is used when two Microsoft network
systems communicate over a network. Its commands
are embedded within the transport protocols like
TCP/IP.

Back in 1999, we weren’t able to use recording for
Microsoft DCOM (Distributed Component Object
Model); it is used for communication between two
remote COM components. Nor we were able to use
recording for Java RMI (Remote Method Invocation); it
is used for communication between two remote Java
programs.

Although some vendors claim their products support
these protocols, they cannot work in all environments.
Script recording and parameterization are still far from
being straightforward and often require a good
knowledge of system internals. The question of
workload validation is also opened. A good illustration
of possible problems is the code below.

Here is an example of recorded RMI protocol:

 _integer =
 _ireportserver.executeJob(_designjobobject);
_ireportserver.getStatus(new Integer(3));
_ireportserver.getStatus(new Integer(3));
_ireportserver.getStatus(new Integer(3));
_iinstance = _ireportserver.getInstance
 (new Integer(3));

Here is the real code producing this RMI
communication:

 joID = poReportServer.executeJob(djo);
 bStatus = true;

 while (bStatus) {
 bStatus = poReportServer.getStatus (joID);
 Thread.sleep(300); }
 poReportServer.getInstance(joID);

The client polls the server each 300 ms to check the
status and get the result as soon as it is ready.
Without knowledge of the real code it is almost
impossible to parameterize the script properly – it just
calls getStatus three times and then calls getInstance
even if the result won’t be ready yet.

So, it is possible that the record and playback
approach won’t work in your environment, or that
using the approach is too time-consuming and
inflexible (as it happened many times for us). When
such problems are encountered, it is a good time to
check other alternatives and add them to your
arsenal.

Record and Playback: GUI Users

Another type of tools uses the recording approach.
These tools record all actions of a real user: mouse
moving and clicking, keystrokes. These tools are
usually used for functional and regression testing.
Examples are Mercury WinRunner, Mercury
QuickTest Professional, and Rational Robot. They
record and playback communication between the user
and client GUI. Users, simulated using such tools, are
often referred as GUI users.

Fig.3 Record and playback approach, GUI users

These tools simulate users in the most accurate way;
they really just take the place of a real user. You get
end-to-end response times identical to what users
would see.

For load testing, these GUI tools are usually used in
conjunction with the load testing tool from the same
vendor, which coordinates execution of multiple GUI
scripts and collects results.

The main problem with such tools is that they require
a machine for each user, so it is almost impossible to
use them for a large number of simulated users – you
need the same number of physical boxes as the
number of users being simulated. Some tools have
the ability to run one user per Windows Terminal
Server session, it significantly increases scalability of
the solution (probably up to low hundreds of users

 Tool App.Client

ServerLoad

Application

Network

G

U

I

A

P

I

from a practical point of view). Another workaround
from Mercury, for example, is using the low-level
graphical Citrix protocol. Still, it is a significantly less
scalable approach than record and playback with
virtual users because you need to have full working
client software (which adds significant overheads on
load generating machines).

These tools also could be useful in combination with
virtual users to verify VU scripts, get end-to-end
timing, or increase the number of use-cases during
load testing re-using functional testing scripts (of
course, if the functional testing tool matches the load
testing tool).

Manual

Manual load generation isn’t a real option if you want
to simulate a large number of users. Still, in some
cases, it can be a good option when you need load
from a few users and don’t have proper tools available
or you face big problems with scripting. Sometimes a
manual test can be a good option on earlier stages of
testing to verify that the system can support
concurrent work or to diagnose, for example, locking
problems.

One of the concerns with manual testing is that even
when each user has an exact scenario, time variations
can occur; so the tests are not exactly reproducible
due to variations in human input times. Such an
approach hardly can be recommended as a long term
solution, even with few users.

It still could be useful to run one or few users manually
in parallel to simulated virtual users’ workload to better
understand what real users would experience. That is
a good way to verify test results: if manual response
times match what you see for scripts (keep in mind
that virtual users don’t have client-side overheads) it is
one more indication that your scripts are correct.

Programming

Programming is another approach to load generation.
A straightforward way to create a multi-user workload
is to develop a special program to generate workload.
This program requires access to the API or source
code and some programming work. It is often used to
test components. No special testing tool is necessary
(although some tools are available that can simplify
your work).

In some simple cases it could be the best solution
(from a cost perspective, especially if there is no
purchased load testing tool). A starting version could
be quickly created by a programmer familiar with the
API. A simple test harness, for example, could spawn
some threads and each thread, simulating a real user,

could include the same sequence of API calls as the
real software for that use case. Such a harness
should work if the API works. You don't need to worry
about what protocol is used for communication.

We successfully used this approach for component
load testing in several projects (and, of course, this
approach is widely used by developers). However,
efforts to update and maintain the harness increase
drastically as soon as you need to add such features
as, for example:

• Complex user scenarios

• Centralized test management and result
analysis

• Coordinated test execution from several
computers

If you have numerous products (as was true in our
case) you really need to create something like a
commercial load testing tool to assure all necessary
performance and reliability testing. It probably isn’t the
best choice for a small group of testers.

Custom Load Generation

Originally we used the record and playback approach
(load testing tools) or created special programs to
generate workload (custom test harnesses) in cases
where recording didn’t work. Since we experienced
numerous problems applying the two above-
mentioned approaches to new products utilizing the
latest technologies, we came to the idea of a mixed
approach. This mixed approach involves developing
lightweight custom software clients (client stubs) to
create the correct workload but use powerful
commercial tools to manage them and analyze the
results [PODE01].

Fig 4. Custom load generation.

The implementation of this approach (we called it
custom load generation) depends on the particular
load testing tool. For the Rational load testing tool and
Mercury LoadRunner, the original way was to create
an external C dll (or shared library for UNIX) and then
call functions defined in the dll from the tool’s native
script language.

Another way to implement this approach appeared in
the later versions of load testing tools: creating a

Load Testing Tool App.

Virtual

Users

ServerLoad Generator

Application

Network

A

P

I

script in a programming language (like Java or Visual
Basic) with the help of templates and special tool-
supplied functions.

These are the significant advantages of this custom
load generation approach:

• It eliminates dependency on the third-party
tool to support specific protocols.

• It leverages all the features of commercial
tools and allows use of them as a test
harness.

• It takes away the need to implement multi-
user support, data collection and analysis,
reporting, scheduling, etc. This is inherent in
the third-party tool.

• It ensures that performance testing of current
or future applications can be done for any
protocol used to communicate among
different tiers. In some instances, it is the only
way to generate load (as it was for SMB,
DCOM, and RMI in our case) without
developing a full-scale custom harness.

But, of course, there are some considerations to keep
in mind for the custom load generation approach:

• It requires access to API or source code.

• It requires additional programming work.

• It requires an understanding of internals.

• The client environment should be set up on all
load generator machines.

• It requires commercial tool licenses for the
necessary number of virtual users.

• The lowest level transaction that can be
measured is an external function.

• It usually requires more resources on client
machines (since there is some custom
software).

• The results should be carefully interpreted (to
insure that there is no contention between
client stubs).

Custom load generation has one more advantage: it
may allow managing the workload in a more user-
friendly way while simplifying parameterization.

For example, if you record socket-level traffic,
recording and parameterization could take a lot of
time. And if you need to change the workload (for
example, use new queries), it is almost impossible to
change the parameterized script to reflect the new
workload. You probably need to re-record and re-
parameterize the script.

 When you implement custom load generation, the
real query could be read from an input file. Changing

the query becomes very easy: you just change the
input file without any changes in the script.

The same is true if different builds of the software are
tested. Small changes could impact a low-level
protocol script, but the API is usually more stable. Just
install the new build and run the test. There is no new
recording and parameterization needed.

Custom Load Generation Examples

All examples below are for Mercury LoadRunner - just
because it is the tool we use most. Similar things can
be done with the Rational performance tool and
probably some other tools.

The first example is a multi-dimensional analytical
engine. Originally the main way to access it was
through the C API; many products use it, including
Excel Add-in. It is possible to record a script using the
Winsock protocol (a low-level protocol recording all
network communication); Winsock scripts are quite
difficult to parameterize and verify.

Here is a small extract of a correlated Winsock script:

lrs_create_socket("socket0", "TCP", "LocalHost=0",

"RemoteHost=ess001.hyperion.com:1423",
lrsLastArg);

lrs_send("socket0", "buf0", LrsLastArg);
lrs_receive("socket0", "buf1", LrsLastArg);
lrs_send("socket0", "buf2", LrsLastArg);
lrs_receive("socket0", "buf3", LrsLastArg);
lrs_save_searched_string("socket0",
 LRS_LAST_RECEIVED, "Handle1",
 "LB/BIN=\\x00\\x00\\v\\x00\\x04\\x00",
 "RB/BIN=\\x04\\x00\\x06\\x00\\x06", 1, 0, -1);
lrs_send("socket0", "buf4", LrsLastArg);
lrs_receive("socket0", "buf5", LrsLastArg);
lrs_close_socket("socket0");

Another part of the script includes the content of each
sent or received buffer:

send buf22 26165
"\xff\x00\xf0\a"
"\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x03\x00"
"d\x00\b\x00"
"y'<Handle1>\x00"
"\b\r\x00\x06\x00\f\x00\x1be\x00\x00\r\x00\xd6\aRN"
"\x1a\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\b"
"\x00\x00\x00\xe7\x00\x00\x01\x00\x03\x00\x04\x00"
"\x10\x00\xcc\x04\x05\x00\x04\x00\x80\xd0\x05\x00\t"
"\x00\x02\x00\x02\x00\b\x00<\x00\x04"
"FY04\aWorking\tYearTotal\tELEMENT-F\tProduct-P"
"\x10<entity>\t\x00\x02\x00"
…

The script consists from many pages of such binary
data. We have a full methodology on how to correlate
such scripts, but it is very time-consuming (you should
go through all pages of the binary data and replace
hard-recorded handles with parameters). Scripts are
almost impossible to parameterize – if you need to
change anything in the query (for example, run it for
another city) you need to start from scratch.

An external dll was made for major functions. Below is
a script using this external dll:

lr_load_dll("c:\\temp\\lr_ess.dll");
pCTX = Init_Context();
hr = Connect(pCTX, "ess01", "user001","password");
…
lr_start_transaction("Mdx_q1");
sprintf(report, "SELECT %s.children on columns,
 %s.children on rows FROM Shipment WHERE
 ([Measures].[Qty Shipped], %s, %s)",
 lr_eval_string("{day}"), lr_eval_string("{product}"),
 lr_eval_string("{customer}"),
 lr_eval_string("{shipper}"));
hr = RunQuery(pCTX, report);
lr_end_transaction("Mdx_q1",LR_AUTO);

The lines above are almost the whole script (except a
few technical lines) instead of many pages of binary
data. An MDX query is generated using day, product,
customer, and shipper as parameters, so we hit the
different spots of the database and avoid artificial
caching effects. We can create scripts for each
function that was included into the dll (that cover the
main functionality of the product).

Another example is a middleware product (without
GUI interface, only an administrative console). We
were given functional test scripts in Java. The product
can use HTTP (with major application servers) or
TCP/IP (as a stand-alone solution). It is possible to
run a test script and record HTTP traffic between the
script and the server. It is HTTP, but it is just binary
data inside the HTTP request body. You can’t do
anything with them; you can only play them back as
is. You need start from a scratch if you want to make
a small change.

The solution that we finally used was the creation of
LoadRunner scripts from the test script directly. Just
put Java code inside the template and add tool-
specific statements (like lr.start_transaction and
lr.end_transaction). Here is how the beginning of the
script looks:

import lrapi.lr;
import com.essbase.api.base.*;
import com.essbase.api.session.*;
…
public int action() {

String s_userName = "system";
String s_password = "password";
lr.enable_redirection(true);
try {
lr.start_transaction("01_Create_API_instance");
ess = IEssbase.Home. create
 (IEssbase.JAPI_VERSION);
lr.end_transaction
 ("01_Create_API_instance", lr.AUTO);
lr.start_transaction("02_SignOn");
IEssDomain dom = ess.signOn(s_userName,
 s_password, s_domainName, s_prefEesSvrName,
 s_orbType, s_port);
lr.end_transaction("02_SignOn", lr.AUTO);
…

Why not create a simple program that will start many
such scripts in parallel? It is an option, but you need to
implement all the infrastructure (coordination, results
analysis, monitoring, etc.) yourself. Such work is
usually not a choice for a small group working with
many different products. That approach, of course,
makes sense when the tool provides this
infrastructure; most inexpensive or free tools,
unfortunately, are weak in providing these elements.

Summary

There is no best approach to load generation or,
moreover, best load testing tool. Some approaches or
tools may be better in a particular context. It is quite
possible that a combination of tools and approaches
would be necessary in complex environments.
Choosing the right strategy in load generation can be
a challenging task. You need to dig deeply into details
of particular tools for a particular project, but it is good
to see the big picture of what is available and what
can be used for that and other projects.

This paper describes our experience of multi-user
workload simulation using different methods of load
generations. These included recording/playback,
programming, and a mixed method (custom load
generation). Custom load generation involves
implementing low-weight custom client software and
running it with a commercial load testing tool which is
used as a harness to collect, analyze and report
results, as well as manage test execution. Select the
set of methods that seem most appropriate to you,
and then evolve your approach to yield the best
results.

References

[BARB04] S.Barber, “Beyond Performance Testing”
(2004). http://www.perftestplus.com/pubs.htm

[IDC04] “Worldwide Distributed Automated Software
Quality Tools 2004-2008 Forecast and 2003 Vendor
Shares”, IDC (2004).

[JAIN91] R. Jain, "The Art of Computer Systems
Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling",
Wiley (1991).

 [MICR04] Improving .NET Application Performance
and Scalability, Microsoft Press (2004).
http://msdn.microsoft.com/library/default.asp?url=/libra
ry/en-us/dnpag/html/scalenet.asp

[PODE01] A.Podelko, A.Sokk, L.Grinshpan, Custom
Load Generation, CMG (2001).

[SEGUE] “Choosing a Load Testing Strategy”. Segue
white paper.
https://www.segue.com/_files/choosing_a_load_testin
g_strategy.pdf

[SMITH02] C.U. Smith, L.G.Williams, “Performance
Solutions”, Addison-Wesley (2002).

[STIR02] S.Stirling, “Load Testing Terminology”,
Quality Techniques Newsletter, September (2002).
http://www.soft.com/News/QTN-Online/qtnsep02.html

*All mentioned brands and trademarks are the
property of their owners.

	CMG 2005 Main Menu
	Papers by Subject Area
	Papers by Author
	Acrobat® Help
	Search This Paper

