
Agile
Performance

Testing

Flexibility and

Iterative Processes

Are Key to Keeping

Tests on Track

20 • Software Test & Performance NOVEMBER/DECEMBER 2009

You run a test and get a lot of information
about the system. To be efficient you need to
analyze the feedback you get, make modifica-
tions and adjust your plans if necessary. Let’s
say, for example, you plan to run 20 different
tests, but after executing the first test you dis-
cover a bottleneck (for instance, the number of
Web server threads). Unless you eliminate the
bottleneck, there’s no point running the other
19 tests if they all use the Web server. To iden-
tify the bottleneck, you may need to change the
test scenario.

Even if the project scope is limited to pre-
production performance testing, an agile, itera-
tive approach helps you meet your goals faster
and more efficiently, and learn more about the
system along the way. After we prepare a test
script (or generate workload some other way),
we can run single- or multi-user tests, analyze
results and sort out errors. The source of errors
can vary–you can experience script errors, func-
tional errors and errors caused directly by per-
formance bottlenecks—and it doesn’t make
sense to add load until you determine the
specifics. Even a single script allows you to
locate many problems and tune the system at
least partially. Running scripts separately also
lets you see the amount of resources used by
each type of load so you can build a system
“model” accordingly (more on that later).

The word “agile” in this article doesn’t
refer to any specific development process or
methodology; performance testing for agile
development projects is a separate topic not
covered in this paper. Rather, it’s used as an
application of the agile principles to perform-
ance engineering.

WHY THE ‘WATERFALL’ APPROACH
DOESN’T WORK
The “waterfall” approach to software develop-
ment is a sequential process in which develop-
ment flows steadily downward (hence the
name) through the stages of requirements
analysis, design, implementation, testing, inte-
gration and maintenance. Performance testing
typically includes these steps:

• Prepare the system.
• Develop requested scripts.
• Run scripts in the requested com bin -

ations.
• Compare results with the requirements

provided.
• Allow some percentage of errors according

to the requirements.
• Involve the development team if require-

ments are missed.
At first glance, the waterfall approach to per-

formance testing appears to be a well-estab-
lished, mature process. But there are many
potential—and serious—problems. For example:

• The waterfall approach assumes that the
entire system—or at least all the functional
components involved—is ready for the per-
formance test. This means the testing can’t be
done until very late in the development cycle, at
which point even small fixes would be expen-
sive. It’s not feasible to perform such full-scope
testing early in the development life cycle.
Earlier performance testing requires a more
agile, explorative process.

• The scripts used to create the system
load for performance tests are themselves soft-
ware. Record/playback load testing tools may
give the tester the false impression that creat-
ing scripts is quick and easy, but correlation,
parameterization, debugging and verification
can be extremely challenging. Running a script
for a single user that doesn’t yield any errors
doesn’t prove much. I’ve seen large-scale cor-
porate performance testing where none of the
script executions made it through logon (single
sign-on token wasn’t correlated), yet perform-
ance testing was declared successful and the
results were reported to management.

• Running all scripts simultaneously makes
it difficult to tune and troubleshoot. It usually
becomes a good illustration of the shot-in-the-
dark antipattern—“the best efforts of a team
attempting to correct a poorly performing appli-
cation without the benefit of truly understanding
why things are as they are” (http://www.kirk
.blogcity.com/proposed_antipattern_shot_in_
the_dark.htm). Or you need to go back and
deconstruct tests to find exactly which part is
causing the problems. Moreover, tuning and per-
formance troubleshooting are iterative process-
es, which are difficult to place inside the “water-
fall.” And in most cases, you can’t do them
offline—you need to tune the system and fix the
major problems before the results make sense.

• Running a single large test, or even sev-

By Alexander Podelko

A
gile software development involves iterations, open collaboration and process adaptability throughout a pro-
ject’s life cycle. The same approaches are fully applicable to performance testing projects. So you need a plan,
but it has to be malleable. It becomes an iterative process involving tuning and troubleshooting in close coop-
eration with developers, system administrators, database administrators and other experts.

Alexander Podelko has specialized in performance
engineering for 12 years. Currently he is a
Consulting Member of Technical Staff at Oracle,
responsible for performance testing and tuning of
the Hyperion product family.

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 21

Flexibility and

Iterative Processes

Are Key to Keeping

Tests on Track

eral large tests, provides minimal infor-
mation about system behavior. It doesn’t
allow you to build any kind of model, for-
mal or informal, or to identify any rela-
tionship between workload and system
behavior. In most cases, the workload
used in performance tests is only an
educated guess, so you need to know
how stable the system would be and
how consistent the results would be if
real workload varied.

Using the waterfall approach does-
n’t change the nature of performance
testing; it just means you’ll probably do
a lot of extra work and end up back at
the same point, performance tuning and
troubleshooting, much later in the cycle.
Not to mention that large tests involving
multiple-use cases are usually a bad
point to start performance tuning and
troubleshooting, because symptoms
you see may be a cumulative effect of
multiple issues.

Using an agile, iterative approach
doesn’t mean redefining the software
development process; rather, it means
finding new opportunities inside existing
processes to increase efficiency overall. In
fact, most good perform-
ance engineers are already
doing performance testing
in an agile way but just pre-
senting it as “waterfall” to
management. In most
cases, once you present
and get management
approval on a waterfall-like
plan, you’re free to do what-
ever’s necessary to test the
system properly inside the
scheduled time frame and
scope. If opportunities
exist, performance engi-
neering may be extended
further, for example, to early
performance checkpoints
or even full software per-
formance engineering.

TEST EARLY
Although I’ve never read
or heard of anybody argu-
ing against testing early, it rarely hap-
pens in practice. Usually there are some
project-specific reasons—tight sched-
ules or budgets, for instance—prevent-
ing such activities (if somebody thought
about them at all).

Dr. Neil Gunther, in his book
Guerrilla Capacity Planning (Springer,
2007), describes the reasons manage-
ment (consciously or unconsciously)

resists testing early. While Gunther’s
book presents a broader perspective
on capacity planning, the methodology
discussed, including the guerrilla
approach, is highly applicable to per-
formance engineering.

Gunther says there’s a set of
unspoken assumptions behind the
resistance to performance-related activ-
ities. Some that are particularly relevant
to performance engineering:

• The schedule is the main measure
of success.

• Product production is more impor-
tant than product performance.

• We build product first and then
tune performance.

• Hardware is not expensive; we can
just add more of it if necessary.

• There are plenty of commercial
tools that can do it.

It may be best to accept that many
project schedules don’t allow sufficient
time and resources for performance
engineering activities and proceed in
“guerrilla” fashion: Conduct perform-
ance tests that are less resource-inten-
sive, even starting by asking just a few

key questions and expand-
ing as time and money
permit.

The software perform-
ance engineering approach
to development of software
systems to meet perform-
ance requirements has long
been advocated by Dr.
Connie Smith and Dr. Lloyd
Williams (see, for example,
their book Perform ance
Solutions, Addison-Wesley,
2001). While their method-
ology doesn’t focus on
testing initiatives, it can’t be
successfully implemented
without some preliminary
testing and data collection
to determine both model
inputs and parameters, and
to validate model results.
Whether you’re consider-
ing a full-blown perform-

ance engineering or guerrilla-style
approach, you still need to obtain baseline
measurements on which to build your cal-
culations. Early performance testing at
any level of detail can be very valuable at
this point.

A rarely discussed aspect of early
performance testing is unit performance
testing. The unit here may be any part of
the system—a component, service or

device. This is not a standard practice,
but it should be. The later in the devel-
opment cycle, the more costly and diffi-
cult it becomes to make changes, so
why wait until the entire system is
assembled to start performance testing?
We don’t wait in functional testing. The
predeployment performance test is an
analog of system or integration tests,
but it’s usually conducted without any
“unit testing” of performance.

The main obstacle is that many sys-
tems are somewhat monolithic; the
parts, or components, don’t make much
sense by themselves. But there may be
significant advantages to test-driven
development. If you can decompose the
system into components in such a way
that you may test them separately for
performance, you’ll only need to fix inte-
gration problems when you put the sys-
tem together. Another problem is that
many large corporations use a lot of
third-party products in which the system
appears as a “black box” that’s not eas-
ily understood, making it tougher to test
effectively.

During unit testing, variables such
as load, security configuration and
amount of data can be reviewed to
determine their impact on performance.
Most test cases are simpler and tests
are shorter in unit performance testing.
There are typically fewer tests with limit-
ed scope—for example, fewer variable
combinations than in a full stress or per-
formance test.

We shouldn’t underestimate the
power of the single-user performance
test: If the system doesn’t perform well
for a single user, it certainly won’t per-
form well for multiple users. Single-user
testing is conducted throughout the
application development life cycle, dur-
ing functional testing and user accept-
ance testing, and gathering performance
data can be extremely helpful during
these stages. In fact, single-user per-
formance tests may facilitate earlier
detection of performance problems and
indicate which business functions and
application code need to be investigated
further.

So while early performance engi-
neering is definitely the best approach (at
least for product development) and has
long been advocated, it’s still far from
commonplace. The main problem here is
that the mindset should change from a
simplistic “record/playback” perform-
ance testing occurring late in the product
life cycle to a more robust, true perform-

[Why wait

until the entire

system is

assembled

to start

performance

testing?]

22 • Software Test & Performance NOVEMBER/DECEMBER 2009

ance engineering approach starting early
in the product life cycle. You need to
translate “business functions” per-
formed by the end user into compo-
nent/unit-level usage, end-user require-
ments into component/unit-level require-
ments and so on. You need to go from
the record/playback approach to using
programming skills to generate the work-
load and create stubs to isolate the com-
ponent from other parts of the system.
You need to go from “black box” per-
formance testing to “gray box.”

If you’re involved from the begin-
ning of the project, a few guerrilla-style
actions early on can save you (and the
project) a lot of time and resources later.
But if you’re called in later, as is so often
the case, you’ll still need to do the best
performance testing possible before the
product goes live. The following sec-
tions discuss how to make the most of
limited test time.

THE IMPORTANCE OF
WORKLOAD GENERATION
The title of Andy Grove’s book Only the
Paranoid Survive may relate even better
to performance engineers than to exec-
utives! It’s hard to imagine a good per-
formance engineer without this trait.
When it comes to performance testing,
it pays to be concerned about every part
of the process, from test design to
results reporting.

Be a performance test architect.
The sets of issues discussed below
require architect-level expertise.

1) Gathering and validating all
requirements (workload definition, first
and foremost), and projecting them onto
the system architecture:

Too many testers consider all infor-
mation they obtain from the business
side (workload descriptions, scenarios,
use cases, etc.) as the “holy scripture.”
But while businesspeople know the
business, they rarely know much about
performance engineering. So obtaining
requirements is an iterative process,
and every requirement submitted should
be evaluated and, if possible, validated.
Sometimes performance requirements
are based on solid data; sometimes
they’re just a guess. It’s important to
know how reliable they are.

Scrutinize system load carefully as
well. Workload is an input to testing,
while response times are output. You
may decide if response times are
acceptable even after the test, but you
must define workload beforehand.

The gathered requirements should
be projected onto the system architec-
ture because it’s important to know if
included test cases add value by testing
different sets of functionality or different
components of the system. It’s also
important to make sure we have test
cases for every component (or, if we
don’t, to know why).

2) Making sure the system under
test is configured properly and the
results obtained may be used (or at
least projected) for the production
system:

Environment and setup considera-
tions can have a dramatic effect. For
instance:

• What data is used? Is it real pro-
duction data, artificially generated
data or just a few random
records? Does the volume of
data match the volume forecast-
ed for production? If not, what’s
the difference?

• How are users defined? Do you
have an account set with the
proper security rights for each vir-
tual user or do you plan to re-use
a single administrator ID?

• What are the differences
between the production and test
environments? If your test system
is just a subset of your production

system, can you simulate the
entire load or just a portion of that
load? Is the hardware the same?

It’s essential to get the test envi-
ronment as close as possible to the pro-
duction environment, but performance
testing workload will never match pro-
duction workload exactly. In “real life,”
the workload changes constantly, includ-
ing user actions nobody could ever
anticipate.

Indeed, performance testing isn’t an
exact science. It’s a way to decrease risk,
not to eliminate it. Results are only as
meaningful as the test and environment
you created. Performance testing typical-
ly involves limited functional coverage,
and no emulation of unexpected events.
Both the environment and the data are
often scaled down. All of these factors
confound the straightforward approach to
performance testing, which states that
we simply test X users simulating test
cases A and B. This way, we leave aside
a lot of questions: How many users can
the system handle? What happens if we
add other test cases? Do ratios of use
cases matter? What if some administra-
tive activities happen in parallel? All of
these questions and more require some
investigation.

Perhaps you even need to investi-
gate the system before you start creat-
ing performance test plans. Perfor mance
engineers sometimes have system
insights nobody else has; for example:

• Internal communication between
client and server if recording used

• Timing of every transaction (which
may be detailed to the point of
specific requests and sets of
parameters if needed)

• Resource consumption used by a
specific transaction or a set of
transactions

This information is additional input—
often the original test design is based on
incorrect assumptions and must be cor-
rected based on the first results.

Be a script writer. Very few sys-
tems today are stateless systems with
static content using plain HTML—the
kind of systems that lend themselves to
a simple “record/playback” approach.
In most cases there are many obstacles
to creating a proper workload. If it’s the
first time you see the system, there’s
absolutely no guarantee you can quickly
record and play back scripts to create
the workload, if at all.

Creating performance testing
scripts and other objects is, in essence,

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 23

a software development project. Some -
times automatic script generation from
recording is mistakenly interpreted as
the entire process of
script creation, but it’s
only the beginning.
Automatic generation pro-
vides ready scripts in very
simple cases, but in most
nontrivial cases it’s just a
first step. You need to cor-
relate and parametize
scripts (i.e., get dynamic
variables from the server
and use different data for
different users).

After the script is cre-
ated, it should be evaluat-
ed for a single user, multi-
ple users and with different
data. Don’t assume the
system works correctly
just because the script
was executed without
errors. Workload validation
is critical: We have to be
sure the applied workload
is doing what it’s supposed to do and
that all errors are caught and logged.
This can be done directly, by analyzing
server responses or, in cases where
that’s impossible, indirectly—for exam-
ple, by analyzing the application log or
database for the existence of particular
entries.

Many tools provide some way to
verify workload and check errors, but a
complete understanding of what exactly
is happening is necessary. For example,
HP LoadRunner reports only HTTP
errors for Web scripts by default (500
“Internal Server Error,” for example). If
we rely on the default diagnostics, we
might still believe that everything is
going well when we get “out of memo-
ry” errors instead of the requested
reports. To catch such errors, we should
add special commands to our script to
check the content of HTML pages
returned by the server.

When a script is parameterized, it’s
good to test it with all possible data. For
example, if we use different users, a few
of them might not be set up properly. If we
use different departments, some could be
mistyped or contain special symbols that
must be properly encoded. These prob-
lems are easy to spot early on, when
you’re just debugging a particular script.
But if you wait until the final, all-script
tests, they muddy the entire picture and
make it difficult to see the real problems.

My group specializes in perform-
ance testing of the Hyperion line of
Oracle products, and we’ve found that a

few scripting challenges
exist for almost every
product. Nothing excep-
tional—they’re usually
easily identified and
resolved—but time after
time we’re called on to
save problematic perform-
ance testing projects only
to discover serious prob-
lems with scripts and sce-
narios that make test
results meaningless. Even
experienced testers stum-
ble, but many problems
could be avoided if more
time were spent analyzing
the situation.

Consider the follow-
ing examples, which are
typical challenges you can
face with modern Web-
based applications:

1) Some operations,
like financial consolidation, can take a
long time. The client starts the operation
on the server, then waits for it to finish,
as a progress bar shows on screen.
When recorded, the script looks like (in
LoadRunner pseudocode):

web_custom_request(“XMLDataGrid.asp_7”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
EXECUTE&TaskID=1024&RowStart=1&ColStart=
2&RowEnd=1&ColEnd=2&SelType=0&Format=
JavaScript”, LAST);

web_custom_request(“XMLDataGrid.asp_8”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”,
LAST);

web_custom_request(“XMLDataGrid.asp_9”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”,
LAST);

web_custom_request(“XMLDataGrid.asp_9”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”,
LAST);

Each request’s activity is defined by
the ?Action= part. The number of GET-
CONSOLSTATUS requests recorded
depends on the processing time.

In the example above, the request
was recorded three times, which means
the consolidation was done by the
moment the third GETCONSOLSTATUS
request was sent to the server. If you play
back this script, it will work this way: The
script submits the consolidation in the
EXECUTE request and then calls GET-

CONSOLSTATUS three times. If we
have a timer around these requests, the
response time will be almost instanta-
neous, while in reality the consolidation
may take many minutes or even hours. If
we have several iterations in the script,
we’ll submit several consolidations, which
continue to work in the background, com-
peting for the same data, while we report
subsecond response times.

Consolidation scripts require cre-
ation of an explicit loop around GET-
CONSOLSTATUS to catch the end of
the consolidation:

web_custom_request(“XMLDataGrid.asp_7”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
EXECUTE&TaskID=1024&RowStart=1&ColStart=
2&RowEnd=1&ColEnd=2&SelType=0&Format=
JavaScript”, LAST);

do {

sleep(3000);

web_reg_find(“Text=1”,”SaveCount=abc_count”,
LAST);

web_custom_request(“XMLDataGrid.asp_8”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”, LAST);

} while (str-
cmp(lr_eval_string(“{abc_count}”),”1”)==0);

Here, the loop simulates the inter-
nal logic of the system, sending GET-
CONSOLSTATUS requests every three
seconds until the consolidation is com-
plete. Without such a loop, the script
just checks the status and finishes the
iteration while the consolidation contin-
ues long after that.

2) Web forms are used to enter and
save data. For example, one form can
be used to submit all income-related
data for a department for a month. Such
a form would probably be a Web page
with two drop-down lists (one for depart-
ments and one for months) on the top
and a table to enter data underneath
them. You choose a department and a
month on the top of the form, then enter
data for the specified department and
month. If you leave the department and
month in the script hardcoded as record-
ed, the script would be formally correct,
but the test won’t make sense at all—
each virtual user will try to overwrite
exactly the same data for the same
department and the same month. To
make it meaningful, the script should be
parameterized to save data in different
data intersections. For example, differ-
ent departments may be used by each

24 • Software Test & Performance NOVEMBER/DECEMBER 2009

[Don’t

assume the

system works

correctly just

because the

script was

executed

without errors.]

user. To parameterize the script, we
need not only department names but
also department IDs (which are internal
representations not visible to users that
should be extracted from the metadata
repository). Below is a sample of correct
LoadRunner pseudocode (where values
between { and } are parameters that may
be generated from a file):

web_submit_data(“WebFormGenerated.asp”,
“Action=http://hfmtest.us.schp.com/HFM/data/We
bFormGenerated.asp?FormName=Tax+QFP&call
er=GlobalNav&iscontained=Yes”,

ITEMDATA,
“Name=SubmitType”, “Value=1”,

ENDITEM,
“Name=FormPOV”, “Value=TaxQFP”,

ENDITEM,
“Name=FormPOV”, “Value=2007”,

ENDITEM,
“Name=FormPOV”, “Value=[Year]”,

ENDITEM,
“Name=FormPOV”, “Value=Periodic”,

ENDITEM,
“Name=FormPOV”, “Value=

{department_name}”, ENDITEM,
“Name=FormPOV”, “Value=<Entity

Currency>“, ENDITEM,
“Name=FormPOV”,

“Value=NET_INCOME_LEGAL”, ENDITEM,
“Name=FormPOV”, “Value=[ICP Top]”,

ENDITEM,

“Name=MODVAL_19.2007.50331648.1.
{department_id}.14.407.2130706432.4.1.90.0.345
”, “Value=<1.7e+3>;;”, ENDITEM,

“Name=MODVAL_19.2007.50331648.1.
{department_id}.14.409.2130706432.4.1.90.0.345
”, “Value=<1.7e+2>;;”, ENDITEM, LAST);

If department name is parameterized
but department ID isn’t, the script won’t
work properly. You won’t get an error, but
the information won’t be saved. This is an
example of a situation that never can hap-
pen in real life—users working through
GUIs would choose department name
from a drop-down box (so it always would
be correct) and matching ID would be
found automatically. Incorrect parameteri-
zation leads to sending impossible combi-
nations of data to the server with unpre-
dictable results. To validate this informa-
tion, we would check what’s saved after
the test—if you see your data there, you
know the script works.

TUNE AND TROUBLESHOOT
Usually, when people talk about per-
formance testing, they don’t separate it
from tuning, diagnostics or capacity
planning. “Pure” performance testing is
possible only in rare cases when the
system and all optimal settings are well-
known. Some tuning activities are typi-
cally necessary at the beginning of test-
ing to be sure the system is tuned prop-

erly and the results will be meaningful. In
most cases, if a performance problem is
found, it should be diagnosed further, up
to the point when it’s clear how to han-
dle it. Generally speaking, performance
testing, tuning, diagnostics and capacity
planning are quite different processes,
and excluding any one of them from the
test plan (if they’re assumed) will make
the test unrealistic from the beginning.

Both performance tuning and trou-
bleshooting are iterative processes
where you make the change, run the
test, analyze the results and repeat the
process based on the findings. The
advantage of performance testing is that
you apply the same synthetic load, so
you can accurately quantify the impact
of the change that was made. That
makes it much simpler to find problems
during performance testing than to wait
until they happen in production, when
workload is changing all the time. Still,
even in the test environment, tuning and
performance troubleshooting are quite

sophisticated diagnostic processes usu-
ally requiring close collaboration
between a performance engineer run-
ning tests and developers and/or sys-
tem administrators making changes. In
most cases, it’s impossible to predict
how many test iterations will be neces-
sary. Sometimes it makes sense to cre-
ate a shorter, simpler test still exposing
the problem under investigation.
Running a complex, “real-life” test on
each tuning or troubleshooting iteration
can make the whole process very long
and the problem less evident because of
different effects the problem may have
on different workloads.

An asynchronous process to fixing
defects, often used in functional test-

ing—testers look for bugs and log them
into a defect tracking system, then the
defects are prioritized and fixed inde-
pendently by the developers—doesn’t
work well for performance testing. First,
a reliability or performance problem
often blocks further performance testing
until the problem is fixed or a
workaround is found. Second, usually
the full setup, which tends to be very
sophisticated, should be used to repro-
duce the problem. Keeping the full setup
for a long time can be expensive or even
impossible. Third, debugging perform-
ance problems is a sophisticated diag-
nostic process usually requiring close
collaboration between a performance
engineer running tests and analyzing the
results and a developer profiling and
altering code. Special tools may be nec-
essary; many tools, such as debuggers,
work fine in a single-user environment
but do not work in the multi-user envi-
ronment, due to huge performance over-
heads. What’s usually required is the

synchronized work of performance engi-
neering and development to fix the prob-
lems and complete performance testing.

BUILD A MODEL
Creating a model of the system under
test significantly increases the value of
performance testing. First, it’s one more
way to validate test correctness and help
to identify system problems—deviations
from expected behavior might signal
issues with the system or with the way
you create workload. Second, it allows
you to answer questions about the sizing
and capacity planning of the system.

Most performance testing doesn’t
require a formal model created by a
sophisticated modeling tool—it may

FIG. 1: THROUGHPUT

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 25

involve just simple observations of the
amount of resources used by each sys-
tem component for the specific work-
load. For example, workload A creates
significant CPU usage on server X while
server Y is hardly touched. This means
that if you increase workload A, the lack
of CPU resources on server X will cre-
ate a bottleneck. As you run increasing-
ly complex tests, you verify results you
get against your “model”—your under-
standing of how the system behaves. If
they don’t match, you need to figure out
what’s wrong.

Modeling often is associated with
queuing theory and other sophisticated
mathematical constructs. While queuing
theory is a great mechanism to build
sophisticated computer system models,
it’s not required in simple cases. Most
good performance engineers and ana-
lysts build their models subconsciously,
without even using such words or any
formal efforts. While they don’t describe
or document their models in any way,
they take note of unusual system behav-
ior—i.e., when system behavior doesn’t
match the model—and can make some
simple predictions (“It looks like we’ll
need X additional resources to handle X
users,” for example).

The best way to understand the
system is to run independent tests for
each business function to generate a
workload resource usage profile. The
load should not be too light (so resource
usage will be steady and won’t be dis-
torted by noise) or too heavy (so it won’t
be distorted by nonlinear effects).

Considering the working range of
processor usage, linear models often
can be used instead of queuing models
for the modern multiprocessor machines

(less so for single-processor machines).
If there are no bottlenecks, throughput
(the number of requests per unit of time),
as well as processor usage, should
increase proportionally to the workload
(for example, the number of users) while

response time should grow insignificant-
ly. If we don’t see this, it means there’s a
bottleneck somewhere in the system and
we need to discover where it is.

For example, let’s look at a simple
queuing model I built using TeamQuest’s
modeling tool for a specific workload
executing on a four-way server. It was
simulated at eight different load levels
(step 1 through step 8, where step 1
represents a 100-user workload and 200
users are added for each step there-
after, so that step 8 represents 1,500
users). Figures 1 through 3 show
through put, response time and CPU
usage from the modeling effort.

An analysis of the queuing model
results shows that the linear model

accurately matches the queuing model
through step 6, where the system CPU
usage is 87 percent. Most IT shops
don’t want systems loaded more than
70 percent to 80 percent.

That doesn’t mean we need to dis-
card queuing theory and sophisticated
modeling tools; we need them when
systems are more complex or where
more detailed analysis is required. But in
the middle of a short-term performance
engineering project, it may be better to
build a simple, back-of-the-envelope
type of model to see if the system
behaves as expected.

Running all scripts simultaneously
makes it difficult to build a model. While
you still can make some predictions for
scaling the overall workload proportional-
ly, it won’t be easy to find out where the
problem is if something doesn’t behave
as expected. The value of modeling
increases drastically when your test envi-
ronment differs from the production envi-
ronment. In that case, it’s important to

document how the model projects test-
ing results onto the production system.

THE PAYOFF
The ultimate goal of applying agile princi-
ples to software performance engineer-
ing is to improve efficiency, ensuring
better results under tight deadlines
and budgets. And indeed, one of the
tenets of the “Manifesto for Agile
Software Develop ment” (http://agile
manifesto.org/) is that responsiveness
to change should take priority over fol-
lowing a plan. With this in mind, we can
take performance testing of today’s
increasingly complex software to new lev-
els that will pay off not just for testers and
engineers but for all stakeholders. �

FIG. 3: CPU USAGE

26 • Software Test & Performance NOVEMBER/DECEMBER 2009

FIG. 2: RESPONSE TIME

