
 | w w w . s o f t w a r e t e s t p r o . c o m36

 Performance
Requirements:

at aAn AtteMPt
systematic
 view

V o l u m e 8 | I s s u e 3 | m a y / J u n e 2 0 1 1 37

PerforMAnCe | reQuIreMents

 P erformance Requirements:
What is the Problem?

At first glance, the subject of
performance requirements looks
simple enough. Almost every book
about performance has a few pages
about performance requirements.
Quite often a performance
requirements section can be found
in project documentation. But
the more you examine the area
of performance requirements, the
more questions and issues arise.

Performance requirements are
supposed to be tracked from the
system inception through the whole
system lifecycle including design,
development, testing, operations,
and maintenance. However different
groups of people are involved in
each stage using their own vision,
terminology, metrics, and tools that
makes the subject confusing when
going into details.

For instance, business analysts
use business terms. The architects’
community uses its own languages
and tools (mostly created for
documenting functionality so
performance doesn’t fit them well).

Developers often think about
performance through the profiler
view. The virtual user notion is
central for performance testers.
Capacity planners use some
mathematical terminology when
they come up with queuing models.
Production people have their own
tools and metrics; and executives
are more interested in high-level,
aggregated metrics. These views
are looking into the same subject –

system performance – but through
different lenses and quite often these
views are not synchronized and differ
noticeably. All of these views should
be synchronized to allow tracing
performance through all lifecycle
stages and easy information exchange
between stakeholders. Many existing
approaches to describing performance
requirements try to put these multi-
dimensional and cross-dependent
performance views into a set of simple
flat templates designed for functional
requirements.

IEEE Software Engineering Book
of Knowledge (SWEBOK, http://
www.computer.org/portal/web/
swebok) defines four stages for the
requirements process:

n Elicitation: gathering requirements

n Analysis: elaboration and
negotiation requirements

n Specification: documenting
requirements

n Validation: making sure that
requirements are correct

Before diving into specific stages
of performance requirements process,
let’s discuss the most important
performance metrics (sometimes
referred as Key Performance
Indicators, KPIs). It is a challenge
to get all stakeholders to agree on
specific metrics and ensure that they
can be measured in a compatible way
at every stage of the lifecycle (which
may require specific monitoring tools
and application instrumentation).

Let’s take a high-level view of a
system (Fig.1). On one side we have
users who use the system to satisfy
their needs. On another side we
have the system, a combination of
hardware and software, created (or
to be created) to satisfy user’s needs.

Business Performance
Requirements
Users are not interested in what
is inside the system and how it
functions as soon as their requests
get processed in a timely manner
(leaving aside personal curiosity and
subjective opinions). So business
requirements should state how many
requests of each kind go through the
system (throughput) and how quickly
they need to be processed (response
times). Both parts are vital: good
throughput with long response times
usually is as unacceptable as are good
response times with low throughput.
Throughput is a business requirement
whereas response times have two
components which include usability
requirements as well as business
requirements. Throughput is the
rate at which incoming requests are
completed. Throughput defines the
load on the system and is measured in
operations per time period. It may be
the number of transactions per second
or the number of processed orders per
hour. In most cases we are interested
in a steady mode when the number of
incoming requests would be equal to
the number of processed requests.

Defining throughput may be pretty
straightforward for a system doing
the same type of business operations
all the time, like processing orders
or printing reports when they are
homogenous. Clustering requests
into a few groups, such as small,
medium and large reports, may be
needed if requests differ significantly.
It may be more difficult for systems
with complex workloads because the
ratio of different types of requests can
change with the time and season.

Fig.1. A high-level view of a system

 PeRfORMANCe ReQUIReMeNTS ARe
 SUPPOSed TO Be TRACked fROM
 THe SySTeM INCePTION THROUgH
 THe wHOle SySTeM lIfeCyCle
 INClUdINg deSIgN, develOPMeNT,
 TeSTINg, OPeRATIONS, ANd
 MAINTeNANCe. AlexPoDELko

by AlexPoDELko

 Performance
Requirements:

 | w w w . s o f t w a r e t e s t p r o . c o m38 V o l u m e 8 | I s s u e 3 | m a y / J u n e 2 0 1 1

PerforMAnCe | reQuIreMents

Throughput usually varies with
time. For example, throughput
can be defined for a typical hour,
peak hour, and non-peak hour for
each particular kind of load. In
environments with fixed hardware
configuration the system should
be able to handle peak load, but in
virtualized or cloud environments it
may be helpful to further detail what
the load is hour-by-hour to ensure
better hardware utilization.

Homogenous throughput with randomly
arriving requests (sometimes assumed
in modeling and requirements analysis)
is a simplification in most cases. In
addition to different kinds of requests,
most systems use a kind of session;
some system resources are associated
with the user (source of requests).
So the number of parallel users
(sessions) would be an important
requirement further qualifying
throughput. In a more generic way
this metric may be named concurrency:
the number of simultaneous users
or threads. It is important, because
connected but inactive users still
hold some resources.

Quite often, however, the load on
the system is characterized by the
number of users. Partially it is coming
from the business (in many cases
the number of users is easier to

find out). Partially it is coming from
performance tests. Unfortunately,
quite often performance requirements
get defined during performance
testing and the number of users
is the main lever to manage load
in load generation tools.

But the number of users doesn’t, by
itself, define throughput. Without
defining what each user is doing and
how intensely (i.e. throughput for one
user), the number of users doesn’t
make much sense as a measure
of load. For example, if 500 users
are each running one short query
each minute, we have throughput
of 30,000 queries per hour. If the
same 500 users are running the
same queries, but only one query per
hour, the throughput is 500 queries
per hour. So there may be the same
500 users, but a 60X difference
between loads (and at least the same
difference in hardware requirements
for the application – probably more,
considering that not all systems
achieve linear scalability).

The number of online users (the
number of parallel sessions) looks
like the best metric for concurrency
(complementing throughput and
response time requirements). However
terminology is somewhat vague here,
sometimes “the number of users” may
have a completely different meaning:

n Total or named users (all registered
or potential users): This is a metric
of data the system works with. It
also indicates the upper potential
limit of concurrency. In some cases
it may be used as a way to find out
concurrency as a percentage of total
user population, but definitely is
not a concurrency metric.

n “Really concurrent” users: the
number of users running requests
at the same time: In most cases
it is matching the number of
requests in the system. While that
metric looks appealing, it is not a
load metric: the number of “really
concurrent” requests depends on
the processing time for this request.
The shorter the processing time,
the fewer concurrent requests
we have in the system. For
example, let’s assume that we got
a requirement to support up to 20
“concurrent” users. If one request
takes 10 sec, 20 “concurrent”
requests mean throughput of 120
requests per minute. But here
we get an absurd situation that if
we improve processing time from
10 to one second and keep the
same throughput; we miss our

requirement because we have only
two “concurrent” users. To support
20 “concurrent” users with a one-
second response time, we really
need to increase throughput 10
times to 1,200 requests per minute.

It is important to understand what
users we are discussing. The difference
between each of these three “number
of users” metrics may be drastic.

Response times (in the case of
interactive work) or processing
times (in the case of batch jobs or
scheduled activities) define how
fast requests should be processed.
Acceptable response times should
be defined in each particular case.
A time of 30 minutes could be
excellent for a big batch job, but
absolutely unacceptable for accessing
a web page in a customer portal.
Response times depend on workload,
so it is necessary to define conditions
under which specific response times
should be achieved; for example, a
single user, average load or peak load.

Response time is the time in the system
(the sum of queuing and processing
time). Usually there is always some
queuing time because the server is
a complex object with sophisticated
collaboration, multiple components
including processor, memory, disk
system, and other connecting parts.
That means that response time is
larger than service time (to use in
modeling) in most cases.

Significant research has been done
to define what the response time
should be for interactive systems,
mainly from two points of view:
what response time is necessary to
achieve optimal user’s performance
(for tasks like entering orders) and
what response time is necessary to
avoid website abandonment (for the
Internet). Most researchers agreed
that for most interactive applications
there is no point in making the
response time faster than one to two
seconds, and it is helpful to provide
an indicator (like a progress bar) if it
takes more than eight to 10 seconds.

Response times for each individual
transaction vary, so we need to
use some aggregate values when
specifying performance requirements,
such as averages or percentiles (for
example, 90 percent of response times
are less than X). Apdex standard
(http://www.apdex.org) uses a single
number to measure user satisfaction.

For batch jobs, it is important
to specify all schedule-related
information, including frequency

“ response times

(in the case of

interactive work)

or processing times

(in the case of batch

jobs or scheduled

activities) define how

fast requests should

be processed.”

 AlexPoDELko

V o l u m e 8 | I s s u e 3 | m a y / J u n e 2 0 1 1 39

PerforMAnCe | reQuIreMents

(how often the job will be run), time
window, dependency on other jobs and
dependent jobs (and their respective
time windows to see how changes in
one job may impact others).

It is very difficult to consider
performance (and, therefore,
performance requirements) without
full context. It depends, for example,
on the volume of data involved,
hardware resources provided, and
functionality included in the system.
So if any of that information is
known, it should be specified in the
requirements. Not everything may be
specified at the same point. While the
volume of data is usually determined
by the business and should be
documented at the beginning, the
hardware configuration is usually
determined during the design stage.

Technological Performance
Requirements
The performance metrics of the system
(the right side of the fig.1) are not
important from the business (or user)
point of view, but are very important for
IT (people who create and operate the
system). These internal (technological)
requirements are derived from business
and usability requirements during
design and development and are very
important for the later stages of the
system lifecycle. Traditionally such
metrics were mainly used for monitoring
and capacity management because they
are easier to measure and only recently
tools measuring end-user performance
get some traction.

The most wide-spread metric,
especially in capacity management
and production monitoring, is
resource utilization. The main
groups of resources are CPU, I/O,
memory, and network. However, the
available hardware resources are
usually a variable in the beginning.
It is one of the goals of the design
process to specify hardware needed
for the system from the business
requirements and other inputs like
company policies, available expertise,
and required interfaces.

When resource requirements are
measured as resource utilization,
they are related to a particular
hardware configuration. They
are meaningful metrics when the
hardware configuration is known.
But these metrics do not make any
sense as requirements until the
hardware configuration would be
decided upon; how can we talk, for
example, about processor utilization

if we don’t know yet how many
processors we would have? And
such requirements are not useful
as requirements for software if it
gets deployed to different hardware
configurations, and, especially,
for Commercial Off-the-Shelf
(COTS) software.

Only way we can speak about
resource utilization on early phases
of the system lifecycle is as a generic
policy. For example, corporate policy
may be that CPU utilization should be
below 70 percent.

When required resources are specified
in absolute values, like the number of
instructions to execute or the number
of I/O operations per transaction
(as sometimes used, for example, for
modeling), it may be considered as a
performance metric of the software
itself, without binding it to a particular
hardware configuration. In the
mainframe world, MIPS was often used
as such metric for CPU consumption,
but there is no such widely used metric
in the distributed systems world.

The importance of resource-related
requirements is increasing again with
the trends of virtualization, cloud
computing, and service-oriented
architectures. When we depart
from the “server(s) per application”
model, it becomes difficult to specify
requirements as resource utilization,
as each application will add only
incrementally to resource utilization.
There are attempts to introduce such
metrics. For example, the ‘CPU usage
in MHz’ or ‘usagemhz’ metric used in
the VMware world or the ‘Megacycles’
metric sometimes used by Microsoft
(for example, see Exchange mailbox
sizing http://technet.microsoft.
com/en-us/library/ee712771.aspx).
Another related metric sometimes
(but rarely) used is efficiency when it
is defined as throughput divided by
resources (however the term is often
used differently).

In the ideal case (for example, when
the system is CPU bound and we can
scale the system linearly just adding
processors) we can easily find needed
hardware configuration if we have an
absolute metric of resources required.

For example, if software needs X
units of hardware power per request
and a processor has Y units of
hardware power, we can calculate
the number of such processors N
needed for processing Z requests
as N=Z*X/Y. The reality, of course,
is more sophisticated. First of all,
we have different kinds of hardware
resources: processors, memory, I/O,

and network. Usually we concentrate
on the most critical one keeping in
mind others as restrictions.

Scalability is a system’s ability to meet
the performance requirements as the
demand increases (usually by adding
hardware). Scalability requirements
may include demand projections
such as an increasing of the number
of users, transaction volumes, data
sizes, or adding new workloads. How
response times will increase with
increasing load or data is important
too (load or data sensitivity).

From a performance requirements
perspective, scalability means that
you should specify performance
requirements not only for one
configuration point, but as a function
of load or data. For example, the
requirement may be to support
throughput increase from five to
10 transactions per second over the
next two years with response time
degradation not more than 10 percent.

Scalability is also a technological
(internal IT) requirement. Or perhaps
even a “best practice” of systems
design. From the business point of
view, it is not important how the
system is maintained to support
growing demand. If we have growth
projections, we probably need to keep
the future load in mind during the
system design and have a plan for
adding hardware as needed.

Software Requirements Process
In the next part we plan to discuss all
stages of the performance requirements
process, which include elicitation,
analysis, specification, and validation,
according to the IEEE Software
Engineering Book of Knowledge
(SWEBOK). The article will consider
each stage and their connection with
other software life cycle processes.

About the Author

Alex Podelko has specialized in performance
engineering for the last fourteen years.
Currently he is Consulting Member of
Technical Staff at Oracle, responsible for
performance testing and tuning of Hyperion
products. Alex has more than 20 years of
overall IT experience and holds a PhD in
Computer Science from Gubkin University and
an MBA from Bellevue University. Alex serves
as a board director for Computer Measurement
Group (CMG), His collection of performance-
related links and documents can be found at
http://www.alexanderpodelko.com.

